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Preface

Despite enormous investments in pharmaceutical research and development, the
number of approved drugs has declined in recent years. The attrition of com-
pounds under development is dramatically high. Safety, insufficient efficacy and,
to some extent, absorption, distribution, metabolism, excretion and toxicity
(ADMET) problems are the responsible factors. Formerly, drugs were discovered
by testing compounds synthesized in time-consuming multistep processes against
a battery of in vivo biological screens. Promising compounds were then further
tested in development, where their pharmacokinetic (PK) properties, metabolism
and potential toxicity were investigated. Adverse findings were often made at this
stage and projects were re-started to find another clinical candidate. Drug discovery
has undergone a dramatic change over the last two decades due to a methodologi-
cal revolution including combinatorial chemistry, high-throughput screening and
in silico methods, which greatly increased the speed of the process of drug finding
and development.

More recently, the bottleneck of drug research has shifted from hit-and-lead dis-
covery to lead optimization, and more specifically to PK lead optimization. Some
major reasons are (i) the imperative to reduce as much as feasible the extremely
costly rate of attrition prevailing in preclinical and clinical phases, and (ii) more
stringent concerns for safety. The testing of ADME properties is now done much
earlier, i.e. before a decision is taken to evaluate a compound in the clinic.

As the capacity for biological screening and chemical synthesis has dramatically
increased, so have the demands for large quantities of early information on ADME
data. The physicochemical properties of a drug have an important impact on its
PK and metabolic fate in the body, and so a good understanding of these proper-
ties, coupled with their measurement and prediction, are crucial for a successful
drug discovery programme.

The present volume is dedicated to the measurement and the prediction of key
physicochemical drug properties with relevance for their biological behavior
including ionization and H-bonding, solubility, lipophilicity as well as three-
dimensional structure and conformation. Potentials and limitations of the relevant
techniques for measuring and calculating physicochemical properties of drugs are
critically discussed and comprehensively exemplified in 17 chapters from 35 dis-
tinguished authors, from both academia and the pharmaceutical industry.
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Copyright © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Preface

We are indebted to all authors for their well-elaborated chapters, and we want
to express our gratitude to Dr Andreas Sendtko and Dr Frank Weinreich from
Wiley-VCH for their valuable contributions to this volume and the ongoing support
of our series Methods and Principles in Medicinal Chemistry.

Raimund Mannhold, Diisseldorf August 2007
Hugo Kubinyi, Weisenheim am Sand
Gerd Folkers, Ziirich



A Personal Foreword

Several editors of previous volumes in this series lised the platform of the Personal
Foreword to reflect routes and contents of their scientific lives and in particular
to appreciate the invaluable support by rewarded colleagues. It is a pleasure for
me to continue this tradition.

After the study of pharmaceutical sciences in Frankfurt/Main I joined the
Department of Clinical Physiology at the Heinrich-Heine-Universitit Diisseldorf
to start my PhD work dedicated to pharmacological studies of the calcium channel
blocker verapamil under the supervision of Raimund Kaufmann. He was a very
liberal scientific teacher and he allowed me to fine-tune the contents of my PhD
work according to my personal preferences.

Frequent contacts with the manufacturer of verapamil, the Knoll company in
Ludwigshafen, enabled an intense communication with Hugo Kubinyi, working
at that time as a medicinal chemist for Knoll. As a consequence of frequent fruitful
discussions with Hugo I included quantitative structure—activity relationship
(QSAR) studies on verapamil congeners in my PhD work and continued working
in the QSAR field till the present.

Two Dutch colleagues and friends have strongly influenced me since the early
1980s. I first met Roelof Rekker, one of the fathers of log P calculation approaches,
on the occasion of one of the famous Noordwijkerhout meetings. Roelof fascinated
me with his elegant lipophilicity studies. After years of fruitful cooperation I had
the privilege to coauthor with him our booklet “Calculation of Drug Lipophilicity”
updating the Xf system, the first fragmental approach for lipophilicity calculation.

My first personal contact to Henk Timmerman happened on the wonderful
island of Capri during a symposium on pharmaceutical sciences. Henk Timmer-
man headed one of the largest and most important departments of Medicinal
Chemistry in European academia. It was very impressive to face his views on our
research field, and his integrated and straightforward way to guide research pro-
jects. For several years I collaborated with his group and, as an added bonus,
became a great fan of Amsterdam.

In the early 1990s, I founded the book series Methods and Principles in Medicinal
Chemistry with Verlag Chemie; Henk Timmerman and Povl Krogsgaard Larsen
joined me on the initial board of series editors. Hugo Kubinyi followed Povl
Krogsgaard Larsen after the first three volumes were released. Henk contributed

Molecular Drug Properties. Measurement and Prediction. R. Mannhold (Ed.)
Copyright © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31755-4
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to the series very intensely and successfully for many years, and I want to thank
him for the times of coediting this book series. When retiring from the chair of
Medicinal Chemistry at the Vrije Universiteit of Amsterdam, he forwarded his
work in the series to Gerd Folkers from ETH, Zurich.

In the late 1990s another fruitful and pleasant cooperation arose in Perugia,
Italy, with the chemometric group of Sergio Clementi and Gabriele Cruciani, two
guys with excellent skills and scientific enthusiasm. Since 1997 I have spent weeks
up to months each year in Perugia for joint projects on three-dimensional (3D)
QSAR and virtual screening studies. Fortunately, these stays also enable a further
specialization in Italian food and wine.

The present volume is dedicated to the measurement and the prediction of key
physicochemical drug properties with relevance for their biological behavior,
including ionization and H-bonding, solubility, lipophilicity as well as 3D structure
and conformation.

In the Introductory section, Bernard Testa, Giulio Vistoli and Alessandro Pedretti
give us “A Fresh Look at Molecular Structure and Properties”, which are key con-
cepts in drug design, but may not mean the same to all medicinal chemists. This
chapter serves as a general opening, and invites readers to stand back and reflect
on the information contained in chemical compounds and on its description. The
authors base their approach on a discrimination between the “core features” and
the physicochemical properties of a compound.

Han van de Waterbemd focuses on “Physicochemical Properties in Drug Profil-
ing”. These properties play a key role in drug metabolism and pharmacokinetics
(DMPK). Their measurement and prediction is relatively easy compared to DMPK
and safety properties, where biological factors come into play. However, the latter
depend to some extent on physicochemical properties as they dictate the degree
of access to biological systems. The change in work practice towards high-through-
put screening (HTS) in biology using combinatorial libraries has also increased
the demands on more physicochemical and absorption, distribution, metabolism
and excretion (ADME) data. Han’s chapter reviews the key physicochemical pro-
perties, both how they can be measured as well as how they can be calculated in
some cases.

Alex Avdeef opens the section on Electronic Properties considering “Drug Ioniza-
tion and Physicochemical Profiling”. The ionization constant tells the pharmaceu-
tical scientist to what degree the molecule is charged in solution at a particular
pH. This is important to know, since the charge state of the molecule strongly
influences its other physicochemical properties. After an in-depth discussion of
the accurate determination of ionization constants, Alex focuses on three physi-
cochemical properties where the ionization constant relates to a critical distribu-
tion or transport function: (i) octanol-water and liposome-water partitioning, (ii)
solubility, and (iii) permeability.

Ovidiu Ivanciuc describes the computation of “Electrotopological State (E-state)
Indices” from the molecular graph and their application in drug design. The E-
state encodes at the atomic level information regarding electronic state and topo-
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logical accessibility. Computing of E-state indices is based exclusively on the
molecular topology and it can be done efficiently for large chemical libraries.
Comparative QSAR models from a large variety of descriptors show that the E-state
indices are often selected in the best QSAR models.

“Polar Surface Area” (PSA) is the topic of Peter Ertl’s chapter. PSA has been
shown to provide very good correlations with intestinal absorption, blood-brain
barrier penetration and several other drug characteristics. It has also been effec-
tively used to characterize drug-likeness during virtual screening and combinato-
rial library design. The descriptor seems to encode an optimal combination of
H-bonding features, molecular polarity and solubility properties. PSA can be easily
and rapidly calculated as a sum of fragment contributions using only the molecular
connectivity of a structure.

Lastly, Oleg Raevsky discusses “H-bonding Parameterization in QSAR and Drug
Design”. Studies based on direct thermodynamic parameters of H-bonding and
exact 3D structures of H-bonding complexes have essentially improved our under-
standing of solvation and specific intermolecular interactions. These studies con-
sider the structure of liquid water, new X-ray data for specific H-bonding complexes,
partitioning in water—solvent-air systems, a refinement in the PSA approach,
improvement of GRID potentials, and calculation schemes of optimum H-bonding
potential values for any concrete H-bonding atoms. Oleg exemplifies the success-
ful application of direct H-bonding descriptors in QSAR and drug design.

Conformational Aspects are covered in the next section. First, Jens Sadowski dis-
cusses automatic “Three-dimensional Structure Generation” as a fundamental
operation in computational chemistry. It has become a standard procedure in
molecular modeling and appropriate software has been available for many years.
Several of the most common concepts as well as their strengths and limitations
are shown in detail. An evaluation study of the two most commonly used pro-
grams, CONCORD and CORINA, indicates their general applicability for robust,
fast and automatic 3D structure generation. Within the limitation of single con-
formation generation, reasonable rates of reproducing experimental geometries
and other quality criteria are reached. For many applications, the obtained 3D
structures are good enough to be used without any further optimization.

Then, Jonas Bostrom and Andrew Grant review “Exploiting Ligand Conforma-
tions in Drug Design”. Section 1 gives a theoretical outline of the problems and
presents details of various implementations of computer codes to perform confor-
mational analysis. Section 2 describes calculations illustrative of the current accu-
racy in generating the conformation of a ligand when bound to proteins (the
bioactive conformer) by comparisons to crystallographically observed data. The
final section concludes by presenting some practical applications of using knowl-
edge of molecular conformation in actual drug discovery projects.

Finally, Burkhard Luy, Andreas Frank and Horst Kessler discuss “Conforma-
tional Analysis of Drugs by Nuclear Magnetic Resonance Spectroscopy”. The
determination and refinement of molecular conformations comprehends three
main methods: distance geometry (DG), molecular dynamics (MD) and simulated
annealing (SA). In principle, it is possible to exclusively make use of DG, MD or
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SA, but normally it is strongly suggested to combine these methods in order to
obtain robust and reliable structural models. Only when the results of different
methods match should a 3D structure be presented. There are various ways of
combining the described techniques and the procedural methods may differ
depending on what kind of molecules are investigated. In this chapter, the authors
give instructions on how to obtain reliable structural models.

Solubility is a fundamental characteristic of drug candidates. In synthetic chem-
istry, low solubility can be problematic for homogeneous reactions, and in preclini-
cal experimental studies, low solubility may produce experimental errors or
precipitation.

First, Chris Lipinski debates “Experimental Approaches to Aqueous and Dimeth-
ylsulfoxide Solubility”. The emphasis is on the discovery stage as opposed to the
development stage. The reader will find numerous generalizations and rules-of-
thumb relating to solubility in a drug discovery setting. The solubility of drugs in
water is important for oral drug absorption. Drug solubility in dimethylsulfoxide
(DMSO) is important in the biological testing of a compound formatted as a
DMSO stock solution. Solubility in aqueous media and DMSO is discussed in the
context of both similarities and differences.

Then, Andreas Klamt and Brian Smith discuss the “Challenge of Drug Solubility
Prediction”. While standard models have emerged for log P, no such convergence
can be observed for log S, probably due to its inherent nonlinear character. Thus,
nonlinear models are required, but it is questionable whether neural network
techniques will ever yield reliable models, because the number of good quality
data required will be of the order of hundreds of thousands. In the authors’ view,
the best way is to make use of the fundamental laws of physical chemistry and
thermodynamics as much as possible. Using the supercooled state of the drug as
intermediate state, and splitting log S into one smaller contribution arising from
the free energy of fusion and a large contribution from the solubility of the super-
cooled drug, appear to be the only sensible way for reasonable calculation.

A quite comprehensive section concerns Lipophilicity, one of the most informa-
tive physicochemical properties in medicinal chemistry and since long success-
fully used in QSAR studies.

“Chemical Nature and Biological Relevance of Lipophilicity” are the topics of
the starting chapter by Giulia Caron and Giuseppe Ermondi. Sections on chemical
concepts to understand the significance of lipophilicity, lipophilicity systems, the
determination of log P and a general factorization of lipophilicity are dedicated to
reflect the chemical nature of lipophilicity. In the second part, the biological rele-
vance of lipophilicity is exemplified for membrane permeation, receptor affinity
and the control of undesired human ether-a-go-go-related gene activity.

Pierre-Alain Carrupt and colleagues review “Chromatographic Approaches for
Measuring Log P”. They present a brief overview of the main features of reversed-
phase liquid chromatography (isocratic condition and gradient elution) and capil-
laryelectrophoresis (microemulsion electrokinetic chromatography, microemulsion
electrokinetic chromatography and liposome/vesicular electrokinetic chromatog-
raphy ) methods used for lipophilicity determination of neutral compounds or the
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neutral form of ionizable compounds. Relationships between lipophilicity and
retention parameters obtained by reversed-phase liquid chromatography methods
using isocratic or gradient condition are reviewed. Advantages and limitations of
the two approaches are also pointed out and general guidelines to determine parti-
tion coefficients in 1-octanol-water are proposed. Finally, recent data on lipophilic-
ity determination by capillary electrophoresis of neutral compounds and neutral
form of ionizable compounds are reviewed.

Raimund Mannhold and Claude Ostermann describe the “Prediction of Log P
with Substructure-based Methods”. Substructure-based methods are either frag-
mental (use fragments and apply correction factors) or atom based (use atom types
and do not apply correction rules). Significant electronic interactions are com-
prised within one fragment; this is a prime advantage of using fragments. On the
other hand, fragmentation can be arbitrary and missing fragments may prevent
calculation. An advantage of atom-based methods is that ambiguities are avoided;
a shortcoming is the failure to deal with long-range interactions. The predictive
power of six substructure-based methods is compared via a benchmarking set of
284 drugs.

Igor Tetko and Gennadyi Poda focus on the “Prediction of Log P with Property-
based Methods”, which are either based on 3D structure representation including
empirical approaches, quantum chemical semiempirical calculations, continuum
solvation models, molecular dynamics calculations, molecular lipophilicity poten-
tial calculations, and lattice energy calculations, or on topological descriptors using
graph molecular connectivity or E-state descriptors. Tetko and Poda used the same
dataset of 284 drugs, and showed best predictivity for A_S+logP and ALOGPS
methods, based on topological descriptors.

Finally, Franco Lombardo and colleagues consider “The Good, the Bad and the
Ugly of Distribution Coefficients”. The question of “how” and “what” log D values
we use in our daily work is an important one. Sections on log D versus log P,
issues and automation in the determination of log D, pH-partition theory and
ion-pairing, and on computational approaches for log D are dedicated to answer
this question in detail. Computational approaches for log D might tempt medicinal
chemists to use routinely a computed value as a surrogate of measured values.
However, “good” practice should be to determine at least a few values for repre-
sentative compounds and continue monitoring the performance of computation
with additional determinations alongside the medicinal chemistry work.

Physicochemical properties guide Drug- and lead-likeness in a dedicated manner.
In the concluding chapter, Sorel Muresan and Jens Sadowski discuss simple cal-
culated compound properties and related aspects in this context. The presence or
absence of specific chemical features as well as their correlation with each other
and with biological potency are of high importance for success in selecting starting
points for lead generation and in guiding chemical optimization. A number of
important concepts such as property ranges, chemical substructure filters, ligand
efficiency and drug-likeness as a classification problem are discussed, and some
of them are finally demonstrated in an example of how to select compounds for
acquisition.
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It was an outstanding experience to plan, organize and realize this book, and to
work with such a distinguished group of contributors. I hope that the readers will
enjoy the work they did. I won new friends during this book project, one of which
is Pierre-Alain Carrupt. He prepared the cover graphics, which represents the
molecular lipophilicity potentials for my “PhD molecule” verapamil in its extended
and folded conformation.

This is already the 37th volume in our series on Methods and Principles in Medici-
nal Chemistry which started in 1993 with a volume on QSAR: Hansch Analysis and
Related Approaches, written by Hugo Kubinyi. An average release of roughly three
volumes per year indicates the increasing appreciation of the series in the
MedChem world. I want to express my sincere thanks to my editor friends Hugo
Kubinyi and Gerd Folkers for their continuous and precious contributions to the
steady development of our series.

Finally I want to acknowledge the pleasant collaboration with Dr Andreas
Sendtko and Dr Frank Weinreich from Wiley-VCH during all steps of editing this
volume.

Raimund Mannhold, Diisseldorf
August 2007
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A Fresh Look at Molecular Structure and Properties

Bernard Testa, Giulio Vistoli, and Alessandro Pedretti

Abbreviations

o,-AR  oy-adrenoceptors
ADME  absorption, distribution, metabolism and excretion

MC Monte Carlo

MD molecular dynamics

MEP molecular electrostatic potential
MIF molecular interaction field

PCA principal component analysis
PSA polar surface area

QSAR  quantitative structure—activity relationship
SAR structure—activity relationship

SAS solvent accessible surface
1.1
Introduction

Molecular structure and properties are key concepts in drug design, but they may
not mean the same to all medicinal chemists, not to mention other researchers
involved in drug discovery and development such as biochemists, pharmacologists
and toxicologists (see Chapter 2). It is therefore the merit of this book to offer a
rationalization of these concepts with a view to advocating their value and clarify-
ing their use.

One of the sources of the fuzziness surrounding these concepts may well be the
implicit assumption in structure—activity relationship (SAR) studies that molecular
structure contains (i.e. encodes) the information on the biological activity of a
given compound. Such an assumption cannot be incorrect, since this would imply
the fallacy of SAR studies. However, the assumption becomes misleading if not
properly qualified to the effect that the molecular structure of a given compound
contains only part of the information on its bioactivity. Indeed, what the structure
of a compound encodes is information about the molecular features accounting

Molecular Drug Properties. Measurement and Prediction. R. Mannhold (Ed.)
Copyright © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31755-4
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for its recognition by a biological system. Such a recognition obviously occurs at
the molecular level — the biological components which “recognize” the compound
being bio(macro)molecular entities or complexes such as membranes, transport-
ers, enzymes, receptors or polynucleosides. The mutual recognition and interac-
tion of bioactive compound and biochemical entity translates into the formation
of a functional complex which triggers the cascade of biochemical events that leads
to the observed biological response [1-3].

As far as SARs are concerned, the outcome of processes such as “recognition”
and “functional response” need to be formalized for incorporation into mathemati-
cal models or simulations. The same is true for “molecular structure”, which
remains an abstract concept until expressed formally and in quantitative terms.
This is what medicinal chemists and their biological colleagues have achieved, as
formalized in Table 1.1. Indeed, SAR studies, in general, and quantitative SAR
(QSAR) studies, in particular, can be subdivided into four components [4]. First,
we find the biological systems themselves, be they functional proteins, molecular
machines, membranes, organelles, cells, tissues, organs, organisms, populations
or even ecosystems. Second, there are the molecular compounds that interact with
these biological systems, be they hits, lead candidates, drug candidates, drugs,
agrochemicals, toxins, pollutants and more generally any type of bioactive com-
pounds; in (Q)SAR studies, these compounds are described by their molecular
features (i.e. their structure and properties). The third component in (Q)SAR
studies are the responses produced by a biological system when interacting with
bioactive compounds; here again, a description in the form of pharmacokinetic,
pharmacological or toxicological descriptors is necessary. As for the last compo-
nent, we find mathematical models or simulations which describe how the biologi-
cal response varies with variations in the molecular structure of bioactive

Tab. 1.1 The four components of SAR and QSAR studies (modified from Ref. [4]).

Component Definition Description in SARs

(A) Biological systems any biological entity, from virtual (in silico) 3D models;
a functional protein to mathematical models
an ecosystem

(B) Bioactive compounds  e.g. hits, lead candidates, molecular features (i.e. their
drug candidates, drugs, structure and properties)
toxins, agrochemicals,
pollutants

(C) Biological responses the response of A when pharmacological or toxicological
exposed to B descriptors

(D) Mathematical models  virtual or mathematical variations in C=variations in the

or simulations models of how variations values of the descriptors;

in C change with variations in B=variations in
variations in the the molecular features of the

molecular structure of B bioactive compounds
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compounds. As is well known to medicinal chemists, the usual statement “. . . how
the biological response varies with the structure of bioactive compounds” is a
simplifying shortcut.

This book focuses on molecular features and properties, their meaning, mea-
surement, computation, and encoding into parameters and descriptors. The
present chapter serves as a general opening, and invites readers to stand back and
reflect on the information contained in chemical compounds and on our descrip-
tion of it. We base our approach on a discrimination between the “core features”
of a molecule/compound and the physicochemical properties of a compound.

1.2
Core Features: The Molecular “Genotype”

1.2.1
The Argument

In our view, the core features of a molecule are the constant (unchangeable) ones,
i.e. those features whose change necessarily implies a transformation into another
molecule. This view is somewhat analogous with the genome, since unless they
are clones different multicellular organisms necessarily have different genotypes.
For this reason we use the term molecular “genotype” to describe the ensemble
of the molecular core features.

As shown in Fig. 1.1, the constant features of a molecule/compound are the
number and nature of its atoms (its composition), the connectivity of its atoms

The Molecular "Genotype" - | "Mutation” | Other
E;gm Ega;!![ﬂs 'I g . E = !!iE! SEEEEREEE # Mofecufar
i (any other ;
* Lomposition i changein | Entities
(number and nature of atoms) "genotype")
(connectivity of atoms)
« Configuration
Changes in composition or constitution
without change in "genotype”:
« Protonation or Deprotonation
= Tautomerism
Fig. 1.1 The core features (molecular (stereochemical features) implies a
“genotype”) of a molecule/compound are “mutation” to another molecule/compound.
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(its constitution), and its absolute configuration. Indeed, any change (i.e. “muta-
tion”) in composition, constitution or configuration yields another molecule/
compound, i.e. a derivative/analog, a constitutional isomer or a stereoisomer.

Note, however, that the above scheme needs further qualification. First and
strictly speaking, protonation and deprotonation involve a change in composition
and connectivity, but they are reversible processes whose equilibrium is a condi-
tion-dependent property. Nevertheless, the low energy barrier and reversibility of
the process lead us to view a base and its conjugated acid as two states of the same
molecular “genotype”. As for tautomerism, it involves a low-energy change in
connectivity, again with a condition-dependent equilibrium. Again, two tautomers
can be considered as two distinct states of the same compound. A further and
more general proviso is the fact that our entire argument is limited to covalent
bonds, with the consequence that an ion and its counterion are considered as two
separate molecular entities.

1.2.2
Encoding the Molecular “Genotype”

Can various components of the core features be encoded in a form suitable for
SAR investigations? Interestingly, the answer is clearly a positive one.
- Composition is partly encoded in molecular weight — a parameter
sometimes used.
- Topological indices are used to describe some components of connectivity.
A more complete description is afforded by unidimensional codes (linear
line notations) such as SMILES. Connectivity plus explicit attention to
valence electrons is afforded by the electrotopological indices
(see Chapter 4).
- Configuration is described by the R- and S-descriptors for enantiomerism,
and the E- and Z-descriptors for geometric n-diastereomerism [5].

1.3
Observable and Computable Properties: The Molecular “Phenotype”

1.3.1
Overview

The phenotype of an organism is its huge repertoire of observable properties. This
phenotype is the visible expression of the organism’ genotype, but is also con-
trolled by the organism’s life history and environment. That is to say that a given
genotype can translate into a large variety of potential phenotypes — a “phenotype
space” [6].

In close analogy with this biological definition, we will designate as molecular
“phenotype” the ensemble of observable and computable properties of a chemical
entity. These indeed are the observable expression of the core features of the
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compound and like a biological phenotype they are influenced by the environment,
here the molecular environment. There is a major difference, however, since
compounds have no life history, but as we shall see in the last part of this chapter,
compounds have a “property space” just like organisms have a phenotype space.

Energy interaction between a probe and a compound is necessary for molecular
properties to be observed. As a result, properties can be categorized according to
the nature of the probe used to observe them. Properties revealed by low-energy
interactions are schematized in Fig. 1.2, which outlines that:

« Spectral properties arise through interactions with electromagnetic

radiation.

« Some pharmacologically important properties such as pK,, tautomeric
equilibrium, conformational behavior, solubility and partitioning are
temperature and solvent dependent.

« Interactions between a vast number of identical molecules give rise to
such solid- or liquid-state properties as melting point and boiling point.

« Interaction with (recognition by) biomolecules triggers the cascade that
leads to a biological response (see above).

The approach we follow below in surveying molecular properties is a different
one based on their interdependence and the progressive emergence of biologically

relevant properties (Fig. 1.3).

The Molecular "Phenotype” —
Pr i veal han

of Energy below the Level
of Covalent Bonds, e.q.:

= with electromagnetic radiations:
Spectral Properties (UV-Vis, IR,
NMR, ...}

= with temperature and solvent:
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Solubility, Partition (log P, log D}, ...

* between identical molecules:
Crystal Properties, Melting point,
Boiling Point, ...

= with biomolecules:

Biological P ti

"Mutation” | Other
!!!!!!!!!!!!!!E!E* Moflecu.'ar
resulting
from energy Entities
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levels above
those of
covalent bonds

(reactivity,
M5,

Fig. 1.2 Properties revealed by low-energy
exchanges belong to the molecular
“phenotype”, as exemplified here. This is
contrasted with some other chemical
properties (e.g. reactivity) which involve the

cleavage and/or formation of covalent bonds,
and thus imply a “mutation” of the
“genotype”. UV, ultraviolet; IR, infrared; NMR,
nuclear magnetic resonance; MS, mass
spectroscopy.
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based on their interdependence and the electrostatic potentials; PK,

progressive emergence of biologically relevant  pharmacokinetic(s); PD, pharmacodynamic(s).
properties. See text for further details. MIFs,

13.2
Equilibria

A two-dimensional (2D) molecule is a simplified abstraction because molecules
have a three-dimensional (3D) form and shape. Furthermore, form and shape
fluctuate, making them four-dimensional (4D) objects. Some molecular entities
may be extremely flexible, others rather rigid, but a totally rigid molecule exists
only at OK.

A major fluctuation is the conformational behavior of molecular entities, as
discussed explicitly in Chapter 9, but also in Chapters 7 and 8. Other equilibria,
already mentioned above, are ionization and tautomerism. The former is the most
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important as far as drug research is concerned and it is discussed extensively in
Chapter 3.

1.3.3
Stereoelectronic Features

The form and shape of a molecule (i.e. its steric and geometric features) derive
directly from the molecular “genotype”, but they cannot be observed without a
probe. Furthermore, they vary with the conformational, ionization and tautomeric
state of the compound. Thus, the computed molecular volume can vary by around
10% as a function of conformation. The same is true of the molecular surface area,
whereas the key (i.e. pharmacophoric) intramolecular distances can vary much
more.

A similar argument can be made for electronic features such as electron density,
polarization and polarizability. These are critically dependent on the ionization
state of the molecule, but the conformational state is also highly influential. One
highly approximate yet useful reflection of electron density is afforded by the polar
surface area (PSA), a measure of the extent of polar (hydrophilic) regions on a
molecular surface (see Chapter 5).

134
Recognition Forces and Molecular Interaction Fields (MIFs)

The stereoelectronic features produce actions at a distance by the agency of the
recognition forces they create. These forces are the hydrophobic effect, and
the capacity to enter ionic bonds, van der Waals interactions and H-bonding
interactions. The most convenient and informative assessment of such recognition
forces is afforded by computation in the form of MIFs, e.g. lipophilicity fields,
hydrophobicity fields, molecular electrostatic potentials (MEPs) and H-bonding
fields (see Chapter 6) [7-10].

Like the stereoelectronic features that generate them, the MIFs are highly sen-
sitive to the conformational and ionization state of the molecule. However,
they in turn have a marked intramolecular influence on the conformational and
ionization equilibria of the compound. It is the agency of the MIFs that closes the
circle of influences from molecular states to stereoelectronic features to MIFs
(Fig. 1.3).

1.3.5
Macroscopic Properties

As shown in Fig. 1.3, MIFs account not only for intramolecular effects, but
also for intermolecular interactions, allowing macroscopic properties to emerge.
The interactions of a chemical with a solvent reveal such pharmacologically essen-
tial properties as solubility (Chapters 10 and 11) and partitioning/lipophilicity
(Chapters 12-16). The interactions between a large number of identical molecules



10

1 A Fresh Look at Molecular Structure and Properties

translate into solid-state properties (including melting point and solubility) or
liquid-state properties such as viscosity and boiling point. Note that these macro-
scopic properties are also influenced by energy influx, both directly and indirectly
(via equilibria).

As the same types of intermolecular forces are involved, there is no qualitative
difference between solute—solvent interactions and the recognition of a compound
by a bio(macro)molecular compound.

Having explained the origin of the adaptable (condition-dependent) character of
molecular properties, we now turn to illustrations of this phenomenon. Indeed,
stating the variable nature of molecular properties is not sufficient to appreciate
its significance in drug design and SAR studies.

1.4
Molecular Properties and their Adaptability: The Property Space of Molecular
Entities

1.4.1
Overview

The concept of property space, which was coined to quantitatively describe the
phenomena in social sciences [11, 12], has found many applications in computa-
tional chemistry to characterize chemical space, i.e. the range in structure and
properties covered by a large collection of different compounds [13]. The usual
methods to approach a quantitative description of chemical space is first to cal-
culate a number of molecular descriptors for each compound and then to use
multivariate analyses such as principal component analysis (PCA) to build a
multidimensional hyperspace where each compound is characterized by a single
set of coordinates.

Whereas this approach has proven very successful in comparing chemical librar-
ies and designing combichem series, it nevertheless is based on the assumption
that the molecular properties being computed are discrete, invariant ones [14].
This assumption derives from the restrictions imposed by the handling of huge
databases, but like many assumptions it tends to fade in the background and be
taken as fact. Yet as chemistry progresses, so does our understanding of molecular
structure taken in its broadest sense, i.e. the mutual interdependence between
geometric features and physicochemical properties.

The growing computational power available to researchers proves an invaluable
tool to investigate the dynamic profile of molecules. Molecular dynamics (MD)
and Monte Carlo (MC) simulations have thus become pivotal techniques to explore
the dynamic dimension of physicochemical properties [1]. Furthermore, the pow-
erful computational methods based in particular on MIFs [7-10] allow some
physicochemical properties to be computed for each conformer (e.g. virtual log P),
suggesting that to the conformational space there must correspond a property
space covering the ensemble of all possible conformer-dependent property
values.
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The concept of property space is progressively being used to gain a deeper
understanding of the dynamic behavior of a single compound in different media
(as we illustrate below with acetylcholine, see Section 1.4.2) or bound to biological
targets (the carnosine—carnosinase complex, see Section 1.4.3), but it can be used
also with a set of compounds to derive fertile descriptors for dynamic QSAR analy-
ses (4D QSAR, see Section 1.4.4).

In this dynamic vision, a molecular property can be described by either (i) an
average value or (ii) descriptors defining its property space. The average value of
a property, and especially a weighted average, contains more information than a
conformer-specific value (even if it is that of the lowest-energy or hypothetical
bioactive conformer). However, this average value does not yield information on
the property space itself. To this end, one should use descriptors specifying the
property range and distribution in relation to conformational changes and other
property profiles.

A property space can be defined using two classes of descriptors. The first class
includes descriptors quantifying the variability (spread) of values; their range is
probably the most intuitive one. The second class of descriptors relates the dynamic
behavior of a given property with other geometric or physicochemical properties.
Such correlations can reveal if and how two molecular properties change in a
coherent manner.

The relations between physicochemical properties and geometric descriptors
describe the ability of a physicochemical property to fluctuate when the 3D geom-
etry fluctuates. These relationships also lead to the concept of molecular sensitiv-
ity, since there will be sensitive molecules whose property values are markedly
influenced by small geometric changes and insensitive molecules whose proper-
ties change little even during major geometric fluctuations. We can assume that
molecular sensitivity may affect biological properties, as the latter are in them-
selves dynamic properties whose emergence will depend on the ability of a mole-
cule to fit into and interact with an active site. Furthermore, molecular sensitivity
and adaptability appear as two sides of the same coin, since sensitive molecules
will need only small conformational changes to adapt their properties to the
environment.

1.4.2
The Versatile Behavior of Acetylcholine

Our first exploration of property space was focused on acetylcholine. This molecule
was chosen for its interesting structure, major biological role, and the abundant
data available on its conformational properties [15]. The behavior of acetylcholine
was analyzed by MD simulations in vacuum, in isotropic media (water and chlo-
roform) [16] and in an anisotropic medium, i.e. a membrane model [17]. Hydrated
n-octanol (1mol water/4 mol octanol) was also used to represent a medium struc-
turally intermediate between a membrane and the isotropic solvents [17].

The conformational profile of acetylcholine depended on the T, and 1; dihedral
angles since T, and T, remained constant during all monitored simulations
(Fig. 1.4). It was found that acetylcholine assumes seven low-energy conformations

1l
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Fig. 1.4 Relevant dihedral angles in acetylcholine (left) and carnosine (right).

(i-e. the full-extended forms, 1,=t and 1;=t, and three pairs of chiral conforma-
tional clusters +g+g/—-g—g; +gt/—gt and t+g/t-g), which can be clustered in folded
(if T, assumes synclinal conformations) and extended forms (if 1, is in antiperipla-
nar geometry). Thus, the conformational profile of acetylcholine strongly depends
on T, since T; shows no clear preference in the range 60-300°. Clearly, the
extended conformers were poorly populated in a vacuum, presumably due to
intramolecular attractions between the cationic head and the electron-rich oxygen
atoms. The proportion of extended conformers markedly increased in the isotropic
solvents (as seen in Table 1.2) even if their increase seems due mainly to the
physical presence of the solvent (i.e. friction and shielding effect) rather than to
its specific physicochemical properties (i.e. polarity, H-bonding). In other words,
solvent polarity does not appear to significantly affect the conformational profile
of acetylcholine.

Notwithstanding this, Table 1.2 clearly shows that the behavior of acetylcholine
reflected the physicochemical properties of the simulated media by adapting its
property space. This is particularly evident when examining the lipophilicity aver-
ages, since the polarity of acetylcholine increased in all media compared to vacuum;
although the differences between the mean log P values were small, they were
significant as assessed by their 99.9% confidence limits.

The adaptability of acetylcholine appears even more evident when comparing
the log P averages per conformational cluster (Fig. 1.5), which were markedly
influenced by the isotropic media. Thus, all averages were lower in water than in
vacuo, while in chloroform they assumed intermediate values, suggesting that
acetylcholine can adjust its lipophilicity behavior by selecting the most suitable
conformers within each conformational cluster rather than by modifying its con-
formational profile. The effects of water and chloroform are easily interpretable in
terms of polarity and friction, but in a solvent such as octanol whose size is com-
parable to its own, the solute minimized steric repulsion by mimicking the shape
of the solvent. In octanol, the extended conformers of acetylcholine successfully
mimicked the preferred zig-zag conformation of the solvent. It is very intriguing
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Tab. 1.2 Limits, ranges and mean values +99.9% confidence limits of the molecular properties of acetylcholine

conformers generated during MD simulations.

Property Medium'

Vacuum (e=1) Chloroform Water Octanol Membrane
SAS (Az) 343 to 377 336 to 376 341 to 378 335 to 374 337 to 371

34 40 37 39 34

358+0.21 356+0.25 361+0.30 358+0.42 354+0.30
PSA (AZ) 24.2 to 44.0 28.5 to 50.4 24.4 to 44.8 32.0 to 51.1 30.1 to 49.3

20.0 219 20.4 19.1 19.2

35.0+0.12 40.1+0.16 37.8+0.11 42.7+0.20 40.7+0.14
Log P, -2.53 to -2.15 -2.53 to -2.19 -2.55t0 -2.20 -2.52 to -2.24 -2.51 to -2.23

0.38 0.34 0.35 0.28 0.28

-2.34+0.0026 -2.36+0.0026 -2.42+0.0026 -2.40+0.0030 -2.39+0.0030
Dipole 5.51 to 10.1 7.43 to 9.54 7.80 to 9.71 7.63 to 9.45 7.56 to 9.40

moment 4.50 2.07 1.91 1.88 1.84

7.78+0.035 8.40+0.016 8.88+0.014 8.67+0.020 8.66+0.019

Extended 6.4 19.7 16.7 22.8 0

geometries (%)

1 Ineach box, the first line shows the limits (minimum to maximum value), the second line the range and the

third line the mean +99.9% confidence limits (t-test). The compiled results are from [16, 17].
2 Distance (in A) between (N*) and (OC)CHj.
3 “Virtual” log P calculated by the molecular lipophilicity potential.

logP 4+g+g -g-g +gt -gt t+g t-g it mean
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Fig. 1.5 Medium effects on average log P values for each conformational cluster.

to note that acetylcholine can modulate the properties of its fully extended con-
formers in an apparently contrasting way, selecting conformers that are simultane-
ously the most extended ones to better mimic the shape of the solvent and
the most lipophilic ones to preserve an intermediate polarity. This suggests that
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conformational space and property spaces are quite independent, and that each
cluster of conformers spans most of the property space of acetylcholine.

Conversely, in a membrane model, acetylcholine showed mean log P values very
similar to those exhibited in water. This was due to the compound remaining in
the vicinity of the polar phospholipid heads, but the disappearance of extended
forms decreased the average log P value somewhat. This suggests that an aniso-
tropic environment can heavily modify the conformational profile of a solute, thus
selecting the conformational clusters more suitable for optimal interactions. In
other words, isotropic media select the conformers, whereas anisotropic media
select the conformational clusters. The difference in conformational behavior in
isotropic versus anisotropic environments can be explained considering that the
physicochemical effects induced by an isotropic medium are homogeneously
uniform around the solute so that all conformers are equally influenced by them.
In contrast, the physicochemical effects induced by an anisotropic medium are
not homogeneously distributed and only some conformational clusters can adapt
to them.

Taken globally, the results show a remarkable adaptability of acetylcholine which
can be justified considering both its intrinsic flexibility, and the fact that its intra-
molecular interactions are not very strong and that almost all media can compete
with them. Such adaptability finds a noteworthy implication in significant pairwise
correlations between physicochemical properties and geometrical descriptors as
well as among physicochemical properties. Thus, Fig. 1.6 shows the revealing 3D

-2.3

logP

24

2.5

28

180
lay, 240

360 0

Fig. 1.6 Three-dimensional plot of 1, and 15 versus virtual log P as obtained from MD
simulation of acetylcholine in water. Reproduced from Ref. [16] with kind permission of
American Chemical Society 2005.



1.4 Molecular Properties and their Adaptability: The Property Space of Molecular Entities | 15

log P

2.2

2.3

i,

L3 T 3

dipole moment

-2.6
75 8 8.5 9 9.5 10

Fig. 1.7 Correlation between virtual log P (calculated with the molecular lipophilicity potential)
and the dipole moment (=0.76) as obtained from MD simulation of acetylcholine in water.
Reproduced from Ref. [16] with kind permission of American Chemical Society 2005.

plots of virtual log P versus 1, and T; as obtained from MD simulation in water
(but all media gave fully comparable plots). Here, lipophilicity was not influenced
by variations of 1,, since the same range was covered for each of the three classes
of conformers (i.e. with 1,=-g or +g or t), while it was highly sensitive to variations
in 13, with the most lipophilic conformers having t;=gauche and the most hydro-
philic ones having t,=trans, suggesting that the main variations in log P are due
to the accessibility of the ester moiety.

Among the correlations between physicochemical properties, the most notewor-
thy one was between dipole moment and log P (e.g. in water, see Fig. 1.7). Clearly,
a higher dipole moment implies a greater hydrophilicity, but the fact that the two
parameters correlate despite their different nature can be seen as a mutual valida-
tion of the respective algorithms used to calculate them.

1.4.3
The Carnosine—Carnosinase Complex

The second example of property space applications concerns the dipeptide carno-
sine (B-alanine-L-histidine, see Fig. 1.4) which represents the archetype of a series
of histidine-containing dipeptides whose full physiological role remains poorly
understood despite extensive studies in recent years [18-20]. Carnosine is synthe-
sized by carnosine synthetase and hydrolyzed by dipeptidases (also called carnosi-
nases) which belong to the metalloproteases [21].

The dynamic profile of carnosine was investigated by comparing MD simula-
tions in isotropic solvents (i.e. water and chloroform) with simulation of the com-
pound bound to serum carnosinase (CN1) [22]. This enzyme is characterized by
its distribution in plasma and brain, and its ability to hydrolyze also anserine and
homocarnosine [23]. The conformational profile of carnosine can be defined by
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five torsion angles (i.e. T,—Ts) [24]. The first two angles concern the B-alanine
residue, while 75, T, and Ts involve the L-histidine residue. In fact, Ty, T, and T;
remained constant during the simulations in isotropic solvents (i.e. water and
chloroform) due to the strong intramolecular ion-pair which heavily influences the
behavior of carnosine in its zwitterionic form. In this case, the variability in con-
formational and property spaces was almost totally due to the orientation of the
imidazole moiety, since the simulated solvents were not able to break the intra-
molecular salt bridge. Specifically, the B-alanine residue was constantly rigidified
in water and chloroform, with 1,=+g, 1,=—g, and 1;=-g. In contrast, the L-histi-
dine residue assumed four different conformers depending on 1, and 75 (i.e. t+g,
t-g, —g+g and —g-g).

When comparing the conformational profile of carnosine in isotropic solvents
and bound to carnosinase, a contrasting behavior is apparent. Indeed, Fig. 1.8(a)
clearly shows that the B-alanine residue is more flexible in the enzyme-bound
complex than in isotropic solvents, while the L-histidine residue appears con-
strained by interactions with carnosinase (Fig. 1.8b). This discrepancy can be
explained considering the interaction pattern binding carnosine to the enzyme
(Fig. 1.9). Thus, the polar residues lining the catalytic site of carnosinase (includ-
ing the key zinc ions) can successfully compete with the intramolecular ionic bond
in carnosine, while the L-histidine residue must retain an accessible conformation
which optimizes the contacts of imidazole with the enzyme. These results confirm
that an isotropic solvent is unable to heavily modify the conformational profile of
a solute, while an anisotropic medium (including a protein, which is also a struc-
tured anisotropic medium) can do it. Interestingly, the membrane model reduced
the conformational space of acetylcholine, while its specific recognition inter-
actions with carnosinase partially enlarged that of carnosine.

The marked rigidity of carnosine reflected in its property spaces (Table 1.3)
deserves some considerations. The high polarity of carnosine is illustrated by the
fact that its PSA in all media is about 50% of its SAS, whereas in acetylcholine
PSA is about 10% of the SAS. It is worth observing that, despite the rigidity which
characterizes the conformational profile of carnosine, this molecule can modulate
its physicochemical properties according to the polarity of the medium, as seen
in its lipophilicity space. Indeed, carnosine in water shows the lowest log P
average, but the highest lipophilicity average when bound to the enzyme, probably
due to the marked accessibility of the imidazole ring into the catalytic site. This
profile confirms the results observed in isotropic media, that the contribution to
lipophilicity of the B-alanine residue is nearly constant — the variability being
mainly due to the accessibility of the histidine moiety. Similarly, the most polar
group in acetylcholine (i.e. its ammonium head) gave a quite constant contribu-
tion, variability in lipophilicity being due to the accessibility of the ester moiety.
This suggests that molecules can modulate the physicochemical profile of highly
polar groups only with great difficulty. The marked accessibility of the imidazole
ring of bound carnosine finds convincing confirmation in the average SAS and
PSA values, which are highest in the carnosinase-bound form. Finally, carnosine
showed the most narrow property ranges when bound to the enzyme, although
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versus T; plot) as simulated for 5ns in water  (b) Conformational behavior of the histidine
(in blue) or when bound to carnosinase (in residue (T, versus Ts plot).

its conformational space was then markedly enlarged. This suggests that a ligand
must assume well-defined property profiles to optimize its recognition by and
binding to an enzyme and that this adaptation is only partly explained by a mere
conformational fit. In other words, conformational space and property spaces are
only partly correlated.

Taken together, our MD simulations of acetylcholine and carnosine emphasize
the marked difference between them. Indeed, acetylcholine is representative of a
sensitive molecule whose physicochemical and structural properties can vary in a
coherent manner, aptly adapting themselves to the simulated media. Conversely,
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Fig. 1.9 Bidimensional representation of the  the unsubstituted imidazole ring. The amido
interaction pattern between carnosinase and  bond is simultaneously bound for recognition
its substrate carnosine. The model shows and polarized for catalysis. Reproduced from
how the enzyme recognizes (binds) the Ref. [22] with kind permission of American
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Tab. 1.3 Limits, ranges and mean values £99.9% confidence limits of the molecular properties
of carnosine conformers generated during MD simulations.

Property Medium’

Water Chloroform Carnosinase
SAS (A?) 395 1o 434 336 to 376 410 to 446

39 40 36

417+0.23 356+0.25 427+0.28
PSA (A2 180 to 226 177 to 221 192 to 234

47 44 42

203+0.33 201+0.33 214+0.27
Log P, —4.57 to -3.98 —4.49 to -3.85 —4.45 to -3.90

0.59 0.66 0.55

—4.28+0.0043 -4.20+0.0044 —4.17+£0.0042

1 In each box, the first line shows the limits (minimum to maximum value), the second line
the range and the third line the mean +99.9% confidence limits (t-test).
2 “Virtual” log P calculated by the molecular lipophilicity potential.

carnosine appears markedly rigidified by an intramolecular ionic bridge which
influences both its conformational space (which is frozen in few conformations)
and its property spaces, as evidenced by their narrow ranges and insignificant
pairwise correlations. Nevertheless, MD simulations revealed that carnosine could
also adjust its physicochemical properties to the simulated medium, suggesting
that the conformational space is easier to constrain than the property spaces, which
indeed conserve a significant elasticity even in very constrained molecules. In
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other words, some physicochemical adaptability to the molecular environment is
retained even in rather rigid compounds. Such molecular adaptability can clearly
influence biological activity and molecular descriptors accounting for adaptability
might find fertile applications in QSAR as described below.

1.4.4
Property Space and Dynamic QSAR Analyses

Our third example illustrates the use in QSAR analyses of parameters describing
the property range and distribution in relation to conformational changes and
other property profiles. As previously stated, a property space can be defined using
two classes of descriptors, i.e. the distribution of property values and the relations
between properties. Thus, the relations between geometric descriptors and physi-
cochemical properties describe the ability of a physicochemical property to fluctu-
ate when the 3D geometry fluctuates. These relations lead to the concept of
molecular sensitivity, since there will be sensitive molecules whose property values
are markedly influenced by small geometric changes and insensitive molecules
whose properties change little even during major geometric fluctuations.

From a mathematical point of view, such correlations may be analyzed by con-
sidering their regression coefficients. However, using regression coefficients as
independent variables may lead to mathematical dead-ends. We thus looked for a
descriptor of property space that would be both informative and simple to use.
The descriptor we propose and evaluate is the amplitude of variation of a given
physicochemical property for a given variation in molecular geometry. If we con-
sider a physicochemical property X for which conformer-specific values can be
computed (e.g. dipole moment, polar surface area, virtual log P, etc.), its pairwise
sensitivity value (Pairwise Sensitivityy ;) for two given conformers (i, j) and a given
geometric descriptor G (e.g. an intramolecular distance, a torsion angle, etc.) can
be defined as the ratio between the absolute value of the difference of X and the
corresponding absolute value of the difference in G:

X, - X,
Pairwise Sensitivityx c; = H (1)
i—G;

The global sensitivity (Sensitivityy ;) will be the average of the pairwise sensitivities
computed for all possible pairs of N conformers, i.e. for N(N—1) pairs.

For any given physicochemical property of a molecule, one can calculate several
sensitivity values according to the geometric descriptors being used. However,
when investigating a set of heterogeneous compounds, a geometric descriptor
applicable to all molecules must be selected. To this end, the root mean square
deviation of atomic coordinates aptly describes geometric differences between
pairs of conformers as a function of their atomic positions.

The objective of this example [25] was to examine whether and how range
and sensitivity can be successfully used as descriptors of the space of relevant
physicochemical properties, and correlated with affinities and receptor subtype
selectivities for a heterogeneous set of ligands of a,-adrenoceptors (0;-ARs) taken
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from the literature [26] and characterized by their large differences in binding
affinities. The conformational space was explored using a MC procedure, and
the properties considered were dipole moment, lipophilicity, polar area and
surface area.

A search for relations between affinity data (pK;) and descriptors of property
spaces (range and sensitivity) failed to uncover any significant correlation (all r
values <0.5). This result was expected and understandable, since affinity depends
on the ligand ability to assume well-defined property values — a type of information
not encoded in range and sensitivity. In contrast, significant correlations were
found between some receptor selectivities and some property space descriptors.
Indeed, ApK,, and ApK, , yielded significant correlations (r>0.7) with log P, PSA
and SAS ranges, whereas ApK, 4 yielded no correlation whatsoever (r<0.1).

A clear trend was also apparent among the physicochemical properties, since
the lipophilicity range yielded the best correlations for both ApK,, and ApK, g,
while the dipole space yielded the lowest. Interestingly, all significant correlation
coefficients were positive, implying that o,;,-AR selectivities are mainly proportional
to variations in physicochemical properties, as expressed mainly by range.

The above observations may imply that the ability to selectively interact with the
0.,-AR is encoded in property space descriptors and especially in the lipophilicity
space, whereas selective interaction with the oy,-AR is only partially encoded in
property space descriptors and a,4-AR selectivity not at all. To verify the above
hypothesis, we recalculated regressions coefficients between ApK,_,, selectivity and
property space parameters, removing the strongly selective o,,-AR ligands.
This indeed produced a slight increase (about 0.05-0.10) in all correlation coeffi-
cients between property spaces and ApK,,. The best correlation, i.e. between
{range_log P} and ApK,, is shown in Eq. 2 and Fig. 1.10:
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Fig. 1.10 Best one-variable correlation between ApK,_, and range_log P (Eq. 2).
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ApK,_,=1.49(£0.12){range _log P} —0.12(£0.13) (2)

n=32,r"=0.79,4*=0.78,s = 0.41

Clearly, this equation cannot take into account ouy,-selective ligands (i.e. with
ApK, ,<0). Indeed, a hypothetical molecule with an impossibly low {range_log P}
of 0 would be predicted to have a ApK,, equal to —0.12. Nevertheless, the good-
ness-of-fit of this equation is remarkable considering the heterogeneous nature of
the ligands and its high ¢ value (i.e. good predictive power) obtained with a single
independent variable.

Given the absence of correlation between the sensitivity and range descriptors,
we also examined whether a two-variable equation would improve on Eq. (2). As
shown by Eq. (3), the inclusion of two independent variables in the same equations
improved their predictive capacity:

ApK,_,=1.61(£0.13){range _log P} (3)
+ 0.34(10.04) {sensitivity _log P} — 0.76(10.19)

n=32,1r"=0.84,4°=0.83,5=0.38 F =74.38

Compared to Eq. (2), Eq. (3) shows a slight statistical improvement. Also, is has a
better predictability for oy, selective ligands, since a hypothetical molecule with
very low {range_log P} and {sensitivity_log P} values would be predicted to have a
ApK, ., equal to —0.76.

From a methodological viewpoint, our results suggest that range and sensitivity
are useful descriptors of property spaces and can parameterize the capacity of a
given molecule to span broad conformational and property spaces. In other words,
range and sensitivity appear as promising descriptors of the dynamic behavior of
a molecule. Their application to other dynamic QSAR studies [in particular,
absorption, distribution, metabolism and excretion (ADME) behavior] is under
investigation.

1.5
Conclusions

As the present and other chapters show, the usual way medicinal chemists describe
molecular structure and properties is necessarily limited and partial. Indeed, it
deals with 4D structures (3D geometry plus conformation) in molecular graphics,
3D and 2D representations on paper, 1D strings in codes, and 0D points in chemi-
cal spaces. However, as we have tried to show here, molecules are 3D objects
whose shape and the various molecular fields they generate vary in space and time,
effectively making them N-dimensional objects. The dynamic complexity of mol-
ecules arises from their interactions with energy fields and with neighboring
molecules, to such extent that a fully isolated molecule is unobservable, the concept
of it being a mere abstraction. However, beyond the grasp of this paradigm lies
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the challenge of expressing and using our ever-increasing wealth of molecular
information in manners suitable for higher-level QSARs yet to be conceived. We
hope the present book may contribute to such a progress.
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Physicochemical Properties in Drug Profiling
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Abbreviations

ADME
BBB
BCS
BMC
Caco-2
CNS
DMPK
FaSSIF
HB
HDM
HSA
HTS
IAM
ILC
MAD
MEKC
PAMPA
PBPK
P-gp
PK
PPB
PSA
QSAR
SPR

Symbols

Ap
Clog P

absorption, distribution, metabolism and excretion
blood-brain barrier

Biopharmaceutics Classification Scheme
biopartitioning micellar chromatography
adenocarcinoma cell line derived from human colon
central nervous system

drug metabolism and pharmacokinetics
fasted-state simulated artificial intestinal fluid
H-bonding

hexadecane membranes

human serum albumin

high-throughput screening

immobilized artificial membrane

immobilized liposome chromatography
maximum absorbable dose

micellar electrokinetic chromatography

parallel artificial membrane permeation assay
physiologically-based pharmacokinetic modeling
P-glycoprotein

pharmacokinetic(s)

plasma protein binding

polar surface area (A?)

quantitative structure—activity relationship
surface plasmon resonance

cross-sectional area (A?)
calculated logarithm of the octanol-water partition coefficient (for
neutral species)
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D distribution coefficient (often in octanol-water)

diffllog P*')  difference between log PN and log P'

Alog P difference between log P in octanol-water and alkane-water

k, transintestinal rate absorption constant (min™')

K, dissociation constant

Elog D experimental log D based on a high-performance liquid
chromatography method

log D logarithm of the distribution coefficient, usually in octanol-water
at pH 7.4

log D’* logarithm of the distribution coefficient, in octanol-water at pH
7.4

log P logarithm of the partition coefficient, usually in octanol-water
(for neutral species)

log P' logarithm of the partition coefficient of a given compound in its
fully ionized form, usually in octanol-water

log PN logarithm of the partition coefficient of a given compound in its
neutral form, usually in octanol-water

MW molecular weight (Da)

P partition coefficient (often in octanol-water)

Py permeability constant measured in Caco-2 or PAMPA assay
(cmmin™)

pK, ionization constant in water

PPB% percentage plasma protein binding

S solubility (mgmL™)

SITT small intestinal transit time (4.5h=270min)

SIWV small intestinal water volume (250 mL)

14 volume (mL or L)

Viss volume of distribution at steady state (Lkg™)

2.1

Introduction

An important part of the optimization process of potential leads to candidates
suitable for clinical trials is the detailed study of the absorption, distribution,
metabolism and excretion (ADME) characteristics of the most promising com-
pounds. Experience has shown that physicochemical properties play a key role in
drug metabolism and pharmacokinetics (DMPK) [1-5]. In 1995, 2000 and 2004
specialized but very well attended meetings were held to discuss the role of log P
and other physicochemical properties in drug research and lead profiling, and the
reader is referred to the various proceedings for highly recommended reading on
this subject [4, 6, 7].

The molecular structure is at the basis of physicochemical, DMPK, as well as
safety/toxicity properties, as outlined in Fig. 2.1. Measurement and prediction of
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Fig. 2.2 The drug discovery process.

physicochemical properties is relatively easy compared to DMPK and safety prop-
erties, where biological factors come into play. However, DMPK and toxicity
properties depend to a certain extent on the physicochemical properties of the
compounds as these dictate the degree of access to biological systems such as
enzymes and transporters.

The change in work practice towards high-throughput screening (HTS) in
biology using combinatorial libraries has also increased the demands on more
physicochemical and ADME data. There has been an increasing interest in physi-
cochemical hits and leads profiling in recent years, using both in vitro and in silico
approaches [8-11]. This chapter will review the key physicochemical properties,
both how they can be measured as well as how they can be calculated in some
cases. Chemical stability [12] is beyond the scope of this chapter, but is obviously
important for a successful drug candidate.

The need and precision of a particular physicochemical property for decision
making in a drug discovery project depends on the stage in the drug discovery
process (see Fig. 2.2). Whilst calculated simple filters may be sufficient in library
design, more experimental data are required in lead optimization. Striking the
right balance between computational and experimental predictions is an impor-
tant challenge in cost-efficient and successful drug discovery.

Physicochemical properties are considerably interrelated as visualized in Fig.
2.3. The medicinal chemist should bear in mind that modifying one often means

27
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Fig. 2.3 Dependencies between various physicochemical properties.

Lipophilicity

also changes in other physicochemical properties, and hence indirectly influencing
the DMPK and safety profile of the compound.

2.2
Physicochemical Properties and Pharmacokinetics

2.2.1
DMPK

The study of DMPK has changed from a descriptive to a much more predictive
science [3]. This is driven by great progress in bioanalytics, development of in vitro
assays and in silico modeling/simulation, and a much better basic understanding
of the processes. Thus, and fortunately, ADME-related attrition has lowered from
around 40% in 1990 to around 10% in 2005 [13].

2.2.2
Lipophilicity — Permeability — Absorption

As an example of the role of physicochemical properties in DMPK, the properties
relevant to oral absorption are described in Fig. 2.4. It is important to note that
these properties are not independent, but are closely related to each other. Oral
absorption is the percentage of drug taken up from the gastrointestinal lumen into
the portal vein blood. The processes involved are a combination of physical chem-
istry and biological (transporters, metabolizing enzymes). The transfer process
through a membrane without any biological component is often called permeabil-
ity. It can be mimicked in an artificial membrane such as the parallel artificial
membrane permeation assay (PAMPA) set-up (see Section 2.8.1). However, in vivo
permeability cannot be measured in isolation from biological events. All so-called
in vitro measures for permeability are nothing else than different types of lipophi-
licity measures. In plotting oral absorption (percentage or fraction) against any
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Fig. 2.4 Importance of physical chemistry properties on permeability, absorption and
bioavailability [16]. (With kind permission of Elsevier.)
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Fig. 2.5 Trendships between oral absorption and permeability/lipophilicity. In reality these
relationships are most likely sigmoidal, i.e. more complex than these trends indicate.

“permeability” or lipophilicity scale (see Fig. 2.5) one observes a trend indicating
that higher permeability or lipophilicity leads to better absorption. Often a plateau
is observed too, indicating that such relationships are in fact nonlinear and can
be approached by a sigmoidal function. Several lipophilicity scales can be related
to each other via a Collander (Eq. 1) or an extended Collander relationship (Eq. 2)
by adding a parameter for the difference in H-bonding (HB) between the two
solvent systems. The equivalent for relating, for example, PAMPA scales to each
other or PAMPA with Caco-2 has also been published [14, 15].

logP =alogP,+b 1)
logP = plogP+qHB+r (2)

Instead of using surrogate measures for oral absorption with a lipophilicity or
permeability assay in vitro, oral absorption can also be estimated in silico by using
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human oral absorption data from the literature [16]. This data is rather sparse
because oral absorption is not systematically measured in clinical trials. The data
is also skewed towards high absorption compounds. In addition, interindividual
variability is important (around 15%). Of course absorption can also be dose and
formulation dependent. Therefore, early estimates are only rough guides to get
the ballpark right.

223
Estimation of Volume of Distribution from Physical Chemistry

The distribution of a drug in the body is largely driven by its physicochemical
properties and in part for some compounds by the contribution of transporter
proteins [17]. By using the Oie-Tozer equation and estimates for ionization (pK,),
plasma protein binding (PPB) and lipophilicity (log D’ quite robust predictions
for the volume of distribution at steady state (Vy), often within 2-fold of the
observed value, can be made [18].

224
PPB and Physicochemical Properties

The percentage of binding to plasma proteins (PPB%) is an important factor in
PK and is determinant in the actual dosage regimen (frequency), but not important
for the daily dose size [3]. The daily dose is determined by the required free or
unbound concentration of drug required for efficacy [3]. Lipophilicity is a major
driver to PPB% [19, 20]. The effect of the presence of negative (acids) or positive
(bases) charges has different impacts on binding to human serum albumin (HSA),
as negatively charged compounds bind more strongly to HSA than would be
expected from the lipophilicity of the ionized species at pH 7.4 [19, 20]
(see Fig. 2.6).

23
Dissolution and Solubility

Each cellular membrane can be considered as a combination of a physicochemical
and biological barrier to drug transport. Poor physicochemical properties may
sometimes be overcome by an active transport mechanism. Before any absorption
can take place at all, the first important properties to consider are dissolution and
solubility [21]. Many cases of solubility-limited absorption have been reported and
therefore solubility is now seen as a property to be addressed at the early stages
of drug discovery. Only compound in solution is available for permeation across
the gastrointestinal membrane. Solubility has long been recognized as a limiting
factor in the absorption process leading to the implementation of high-throughput
solubility screens in early stages of drug design [22-26]. Excessive lipophilicity is
a common cause of poor solubility and can lead to erratic and incomplete absorp-
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neutrals and basics. (With kind permission of Springer-Kluwer.)

Tab. 2.1 Desired solubility (ugmL™) needed for expected

doses [26].
Dose (mgkg™) Permeability
High Medium Low
0.1 1 5 21
1 10 52 210
10 100 520 2100

tion following oral administration. Estimates of desired solubility for good oral
absorption depend on the permeability of the compound and the required dose,
as illustrated in Table 2.1 [26]. The incorporation of an ionizable center, such as
an amine or similar function, into a template can bring a number of benefits
including water solubility.

The concept of maximum absorbable dose (MAD) relates drug absorption to
solubility via [27, 28]:

MAD = S x k, x SIWV x SITT (3)

where S=solubility (mgmL™) at pH 6.5, k,=transintestinal absorption rate con-
stant (min™"), SIWV=small intestinal water volume (mL), assumed to be around
250mL, and SITT=small intestinal transit time (min), assumed to be
4.5h=270min.
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Dissolution testing has been used as a prognostic tool for oral drug absorption
[29]. A Biopharmaceutics Classification Scheme (BCS) has been proposed under
which drugs can be categorized into four groups according to their solubility and
permeability properties [30]. As both permeability as well as solubility can be
further dissected into more fundamental properties, it has been argued that the
principal properties are not solubility and permeability, but rather molecular size
and H-bonding [31]. The BCS has been adopted as a regulatory guidance for bio-
equivalence studies.

2.3.1
Calculated Solubility

As a key first step towards oral absorption, considerable effort went into the devel-
opment of computational solubility prediction [32-39]. However, partly due to a
lack of large sets of experimental data measured under identical conditions, today’s
methods are not robust enough for reliable predictions [40]. Further fine-tuning
of the models can be expected now high-throughput data has become available to
construct such models. Models will be approximate since they do not take into
account the effect of crystal packing, ionic force, type of buffer, temperature, etc.
Solubility is typically measured in an aqueous buffer only partly mimicking the
physiological state. More expensive fasted-state simulated artificial intestinal fluid
(FaSSIF) solutions have been used to measure solubility, which in some cases
appear to give better predictions in physiologically based pharmacokinetic (PBPK)
modeling than solubility data using a simpler aqueous buffer [41].

2.4
lonization (pK,)

It was assumed for a long time that molecules can only cross a membrane in their
neutral form. This dogma, based on the pH-partition theory, has been challenged
[42, 43]. Using cyclic voltammetry it was demonstrated that compounds in their
ionized form pass into organic phases and might well cross membranes in this
ionized form [44].

The importance of drug ionization using cell-based methods such as Caco-2 in
the in vitro prediction of in vivo absorption was discussed [45]. It was observed that
when the apical pH used in Caco-2 studies was lowered from 7.4 to 6.0 a better
correlation was obtained with in vivo data, demonstrating that careful selection of
experimental conditions in vitro is crucial to produce a reliable model. Studies with
Caco-2 monolayers also suggested that the ionic species might contribute consid-
erably to overall drug transport [46].

Various ways that a charged compound may cross a membrane by a “passive”
mechanism have been described [42]. These include transport as ion (trans- and/or
paracellular), ion-pair or protein-assisted (using the outer surface of a protein
spanning a membrane).
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Therefore a continued interest exists in the role of pK, in oral absorption, which
often is related to its effect on lipophilicity and solubility. Medicinal chemists can
modulate these properties through structural modifications [47]. Various methods
to measure pK, values have been developed [47-50] and considerable databases
are now available.

The difference between the log P of a given compound in its neutral form
(log PY) and its fully ionized form (log P') has been termed diff{log PN™) and con-
tains series-specific information, and expresses the influence of ionization on the
intermolecular forces and intramolecular interactions of a solute [44, 51, 52].

2.4.1
Calculated pK,

A number of approaches to predict ionization based on structure have been pub-
lished (for a review, see [53]) and some of these are commercially available. Predic-
tions tend to be good for structures with already known and measured functional
groups. However, predictions can be poor for new innovative structures. Neverthe-
less, pK, predictions can still be used to drive a project in the desired direction
and the rank order of the compounds is often correct. More recently training
algorithms have also become available which use in-house data to improve the
predictions. This is obviously the way forward.

25
Molecular Size and Shape

Molecular size can be a further limiting factor in oral absorption [54]. The Lipinski
“Rule-of-5” proposes an upper limit of molecular weight (MW) of 500 as acceptable
for orally absorbed compounds [25]. High-MW compounds tend to undergo biliary
excretion. Size and shape parameters are generally not measured, but rather cal-
culated. A measured property is the so-called cross-sectional area, which is obtained
from surface activity measurements [55].

2.5.1
Calculated Size Descriptors

MW is often taken as the size descriptor of choice, while it is easy to calculate and
is in the chemist’s mind. However, other size and shape properties are equally
simple to calculate, and may offer a better guide to estimate potential for permea-
bility. Thus far no systematic work has been reported investigating this in detail.
Cross-sectional area Ap obtained from surface activity measurements have been
reported as a useful size descriptor to discriminate compounds which can access
the brain (Ap<80A?) of those that are too large to cross the blood—brain barrier
(BBB) [55]. Similar studies have been performed to define a cut-off for oral
absorption [56].
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2.6
H-bonding

Molecular size and H-bonding have been unraveled as the two major components
of log P or log D [57-59]. It was found that H-bonding capacity of a drug solute
correlates reasonably well with passive diffusion. Alog P, the difference between
octanol-water and alkane—water partitioning, was suggested as a good measure
for solute H-bonding [58, 60, 61]. However, this involves tedious experimental
work and it appeared that calculated descriptors for H-bonding could most conve-
niently be assessed, in particular also for virtual compounds.

2.6.1
Calculated H-bonding descriptors

Considerable interest is focused on the calculation of H-bonding capability in the
design of combinatorial libraries, for assessing the potential for oral absorption
and permeability [16, 62—-65]. A number of different descriptors for H-bonding
have been discussed [66], one of the simplest being the count of the number of
H-bond forming atoms [67].

A simple measure of H-bonding capacity, originally proposed by Van de Water-
beemd and Kansy, is the polar surface area (PSA), defined as the sum of the frac-
tional contributions to surface area of all nitrogen and oxygen atoms and hydrogens
attached to these [68]. PSA was used to predict passage of the BBB [69-71], flux
across a Caco-2 monolayer [72] and human intestinal absorption [73, 74]. The
physical explanation is that polar groups are involved in desolvation when they
move from an aqueous extracellular environment to the more lipophilic interior
of membranes. PSA thus represents, at least part of, the energy involved in mem-
brane transport. PSA is dependent on the conformation and the original method
[68] is based on a single minimum energy conformation. Others [73] have taken
into account conformational flexibility and coined a dynamic PSA, in which a
Boltzmann-weighted average PSA is computed. However, it was demonstrated
that PSA calculated for a single minimum energy conformation is in most cases
sufficient to produce a sigmoidal relationship to intestinal absorption, differing
very little from the dynamic PSA described above [74]. A fast calculation of PSA
as a sum of fragment-based contributions has been published [75], allowing use
of these calculations for large datasets such as combinatorial or virtual libraries.
The sigmoidal relationship can be described by A% =100/[1+ (PSA/PSAs)"], where
A% is percentage of orally absorbed drug, PSAs, is the PSA at 50% absorption
level and v is a regression coefficient [76].

Poorly absorbed compounds have been identified as those with a PSA>140A2,
Considering more compounds, considerable more scatter was found around the
sigmoidal curve observed for a smaller set of compounds [74]. This is partly due
to the fact that many compounds do not show simple passive diffusion only, but
are affected by active carriers, efflux mechanisms involving P-glycoprotein (P-gp)
and other transporter proteins, and gut wall metabolism. These factors also con-
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tribute to the considerable inter-individual variability of human oral absorption
data. A further refinement in the PSA approach is expected to come from taking
into account the strength of the H-bonds, which in principle already is the basis
of the HYBOT approach [63-65].

2.7
Lipophilicity

Octanol-water partition (log P) and distribution (log D) coefficients are widely used
to make estimates for membrane penetration and permeability, including gastro-
intestinal absorption [77, 78], BBB crossing [60, 69] and correlations to pharmaco-
kinetic properties [1]. The two major components of lipophilicity are molecular
size and H-bonding [57], which each have been discussed above (see Sections 2.5
and 2.6).

According to published International Union of Pure and Applied Chemistry
recommendations the terms hydrophobicity and lipophilicity are best described as
follows [79]:

« Hydrophobicity is the association of nonpolar groups or molecules in an
aqueous environment which arises from the tendency of water to exclude
nonpolar molecules

« Lipophilicity represents the affinity of a molecule or a moiety for a
lipophilic environment. It is commonly measured by its distribution
behavior in a biphasic system, either liquid-liquid (e.g. partition
coefficient in 1-octanol-water) or solid-liquid (retention on reversed-phase
high-performance liquid chromatography or thin-layer chromatography
system).

The intrinsic lipophilicity (P) of a compound refers only to the equilibrium of the
unionized (neutral) drug between the aqueous phase and the organic phase. It
follows that the remaining part of the overall equilibrium, i.e. the concentration
of ionized drug in the aqueous phase, is also of great importance in the overall
observed partition ratio. This in turn depends on the pH of the aqueous phase
and the acidity or basicity (pK,) of the charged function. The overall ratio of drug,
ionized and unionized, between the phases has been described as the distribution
coefficient (D), to distinguish it from the intrinsic lipophilicity (P). The term has
become widely used in recent years to describe, in a single term, the effective (or
net) lipophilicity of a compound at a given pH taking into account both its intrinsic
lipophilicity and its degree of ionization. The distribution coefficient (D) for a
monoprotic acid (HA) is defined as:

D= [HA]organic/([HA]aqueous + [A_]aqueous) (4)

where [HA] and [A7] represent the concentrations of the acid in its unionized and
dissociated (ionized) states, respectively. The ionization of the compound in water
is defined by its dissociation constant (K,) as:
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K, =[H"][A"]/[HA] )

sometimes referred to as the Henderson-Hasselbalch relationship. The combina-
tion of Egs. (4)—(6) gives the pH-distribution (or “pH-partition”) relationship:

D=P/(1+{K,/[H"]}) (6)
more commonly expressed for monoprotic organic acids in the form:

log({P/D}-1)=pH-pK, )
or

log D =1log P —log(1+ 10PFP%) 8)

For monoprotic organic bases (BH" dissociating to B) the corresponding relation-

ships are:

log({P/D}-1)=pK,-pH )
or:

log D =log P —log(1+10P%PH) (10)

From these equations it is possible to predict the effective lipophilicity (log D) of an
acidic or basic compound at any pH value. The data required in order to use the
relationship in this way are the intrinsic lipophilicity (log P), the dissociation con-
stant (pK,) and the pH of the aqueous phase. The overall effect of these relationships
is the effective lipophilicity of a compound, at physiological pH, is approximately
the log P value minus one unit of lipophilicity, for every unit of pH the pK, value is
below (for acids) and above (for bases) pH 7.4. Obviously for compounds with mul-
tifunctional ionizable groups the relationship between log P and log D, as well as
log D as a function of pH become more complex [65, 68, 70]. For diprotic molecules
there are already 12 different possible shapes of log D-pH plots.

Traditional octanol-water distribution coefficients are still widely used in quan-
titative structure—activity relationship (QSAR) and in ADME/PK studies. However,
alternative solvent systems have been proposed [80]. To cover the variability in
biophysical characteristics of different membrane types a set of four solvents has
been suggested, sometimes called the “critical quartet” [81]. The 1,2-dichloroeth-
ane-water system has been promoted as a good alternative to alkane-water due to
its far better dissolution properties [82, 83], but may find little application because
of its carcinogenic properties.

Several approaches for higher throughput lipophilicity measurements have been
developed in the pharmaceutical industry [50] including automated shake-plate
methods [84] and immobilized artificial membranes [85]. A convenient method to
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measure octanol-water partitioning is based on potentiometric titration, called the
pH method [86]. Methods based on chromatography are also widely used, e.g.
chromatographic hydrophobicity indices measured on immobilized artificial
membranes (IAM) [19, 87]. Another chromatography-based method is called Elog
D giving log D values comparable to shake-flask data [88].

2.7.1
Calculated log P and logD

A number of rather comprehensive reviews on lipophilicity estimation have been
published and are recommended for further reading [89-91]. Due to its key impor-
tance, a continued interest is seen to develop good log P estimation programs
[82-94]. Most log P approaches are limited due to a lack of parameterization of
certain fragments. For the widely used CLOGP program (Daylight/Biobyte com-
puter program for the calculation of log P), a version making estimates for missing
fragments has become available [95].

With only few exceptions, mostlog P programs refer to the octanol-water system.
Based on Rekker’s fragmental constant approach, a log P calculation for aliphatic
hydrocarbon-water partitioning has been reported [96]. Another more recent
approach to alkane-water log P and log D is based on the program VolSurf [97]. It
is believed that these values may offer a better predictor for uptake in the brain.
The group of Abraham investigated many other solvent systems and derived equa-
tions to predict log P from structure for these solvent systems, which are also
commercially available [94].

Log D predictions are more difficult as most approaches rely on the combination
of estimated log P and estimated pK,. Obviously, this can lead to error accumulation
and errors of 2 log units or more can be found. Some algorithms, however, are
designed to learn from experimental data so that the predictions improve over time.
An interesting approach is also the combination of a commercial log D predictor
with proprietary descriptors using a Bayesian neural network approach [98].

2.8
Permeability

An overview of permeability assays is presented in Table 2.2. As discussed earlier
in this chapter, these permeability scales are correlated to each other as well as the
various lipophilicity scales via extended Collander equations.

2.8.1
Artificial Membranes and PAMPA

When screening for absorption by passive membrane permeability, artificial mem-
branes have the advantage of offering a highly reproducible and high-throughput
system. Artificial membranes have been compared to Caco-2 cells and for passive



38 | 2 Physicochemical Properties in Drug Profiling

Tab. 2.2 In vitro models for membrane permeability.

Permeability model Reference

Solvent-water partitioning

octanol-water distribution 52
Chromatography

IAM 99-103

ILC 104

MEKC 105

BMC 106
Vesicles

phospholipid vesicles 107

liposome binding 108, 109

Transil particles 110-112

fluorosomes 113

SPR biosensor 114, 115

colorimetric assay 116
Artificial membranes

impregnated membranes 72

PAMPA 117-123

filter IAM 121-123

hexadecane-coated polycarbonate filters (HDM) 124, 125
Other

surface activity 126
Cell-based assays

Caco-2 76,78

Madin-Darby canine kidney 127

diffusion found to behave very similar [72]. This finding was the basis for the
development of the PAMPA for rapid prediction of transcellular absorption poten-
tial [117-120]. In this system the permeability through a membrane formed by a
mixture of lecithin and an inert organic solvent on a hydrophobic filter support is
assessed. Whilst not completely predictive for oral absorption in humans, PAMPA
shows definite trends in the ability of molecules to permeate membranes by
passive diffusion, which may be valuable in screening large compound libraries.
This system is commercially available [121], but can easily be set up in-house.
Further optimization of the experimental conditions has been investigated, con-
cluding that predictability increases when a pH of 6.5 or 5.5 is used on the donor
side [122, 123]. It was also demonstrated that the effect of a cosolvent such as
dimethylsulfoxide (DMSO) could have a marked effect depending on the nature,
basic/acid, of the compound [123]. Stirring of the donor compartment to limit the
contribution of the unstirred water layer appears to be important to get meaningful
results. There have been so far no reports in the literature about using PAMPA
data in a drug discovery project.

A similar system has been reported based on polycarbonate filters coated with
hexadecane, also called hexadecane membranes (HDM) [124, 125]. Thus, this
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system consists of a 9- to 10-um hexadecane liquid layer immobilized between two
aqueous compartments. Also here it was observed that in this set-up for lipophilic
compounds the diffusion through the unstirred water layer becomes the rate-limit-
ing step. To mimic the in vivo environment permeability measurements were
repeated at different pH values in the range 4-8 and the highest transport value used
for correlation with percentage absorbed in human. This gives a sigmoidal depen-
dence, which is better than when taking values measured at a single pH, e.g. 6.8.

2.8.1.1 In Silico PAMPA

The experimental P,,, data have been used to build predictive models. However,
since PAMPA is already a model, an in silico model based on this is a model of a
model. The predictability for in vivo permeability or absorption of such in silico
PAMPA model can be questioned (see Eq. 11), since it is two steps from reality:

model X model = random (11)

2.8.2
IAM, Immobilized Liposome Chromatography (ILC), Micellar Electrokinetic
Chromatography (MEKC) and Biopartitioning Micellar Chromatography (BMC)

IAM columns are another means of measuring lipophilic characteristics of drug
candidates and other chemicals [99-103]. IAM columns may better mimic mem-
brane interactions than the isotropic octanol-water or other solvent-solvent parti-
tioning system. These chromatographic indices appear to be a significant predictor
of passive absorption through the rat intestine [128].

A related alternative is called ILC [104, 105]. Compounds with the same log P
were shown to have very different degrees of membrane partitioning on ILC
depending on the charge of the compound [105].

Another relatively new lipophilicity scale proposed for use in ADME studies is
based on MEKC [106]. A further variant is called BMC and uses mobile phases of
Brij35 [polyoxyethylene(23)lauryl ether] [129]. Similarly, the retention factors of 16
B-blockers obtained with micellar chromatography with sodium dodecyl sulfate as
micelle-forming agent correlates well with permeability coefficients in Caco-2
monolayers and apparent permeability coefficients in rat intestinal segments
130].

Each of these scales produce a lipophilicity index related but not identical to
octanol-water partitioning.

2.83
Liposome Partitioning

Liposomes, which are lipid bilayer vesicles prepared from mixtures of lipids, also
provide a useful tool for studying passive permeability of molecules through lipid.
This system has, for example, been used to demonstrate the passive nature of the
absorption mechanism of monocarboxylic acids [131]. Liposome partitioning of



40 | 2 Physicochemical Properties in Drug Profiling

ionizable drugs can be determined by titration and has been correlated with human
absorption [108, 109, 132]. Liposome partitioning is only partly correlated with
octanol-water distribution and might contain some additional information.

A further partition system based on the use of liposomes, and commercialized
under the name Transil [110, 111], has shown its utility as a lipophilicity measure
in PBPK modeling [112]. Fluorescent-labeled liposomes, called fluorosomes, are
another means of measuring the rate of penetration of small molecules into mem-
brane bilayers [113, 120]. Similarly, a colorimetric assay amenable to HTS for
evaluating membrane interactions and penetration has been presented [116]. The
platform comprises vesicles of phospholipids and the chromatic lipid-mimetic
polydiacetylene. The polymer undergoes visible concentration-dependent red—blue
transformations induced through interactions of the vesicles with the studied
molecules.

2.8.4
Biosensors

Liposomes have been attached to a biosensor surface, and the interactions between
drugs and the liposomes can be monitored directly using surface plasmon reso-
nance (SPR) technology. SPR is measuring changes in refractive index at the
sensor surface caused by changes in mass. Drug-liposome interactions have been
measured for 27 drugs and compared to fraction absorbed in humans [114]. A
reasonable correlation is obtained, but it is most likely that this method represents
just another way of measuring “lipophilicity”. The throughput was 100 substances
per 24h, but further progress seems possible. In more recent work using this
method it is proposed to use two types of liposomes to separate compounds accord-
ing to their absorption potential [115].

2.9
Amphiphilicity

The combination of hydrophilic and hydrophobic parts of a molecule defines its
amphiphilicity. A program has been described to calculate this property and cali-
brated against experimental values obtained from surface activity measurements
[133]. These values can possibly be used to predict effect on membranes leading
to cytotoxicity or phospholipidosis, but may also contain information, not yet
unraveled, on permeability. Surface activity measurements have also been used to
make estimates of oral absorption [126].

2.10
Drug-like Properties

The various properties described above are important for drugs, in particular for
those given orally. The important question arises whether such properties of drugs
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are different from chemicals used in other ways. This has been subject of a
number of investigations [134, 135]. Using neural networks [136, 137] or a decision
tree approach [138], a compound can be predicted as being “drug-like” with an
error rate of around 20%. A further approach to predict drug-likeness consists of
training of the program PASS (prediction of activity spectra for substances) [139],
which originally was intended to predict activity profiles and thus is suitable to
predict potential side effects.

From an analysis of the key properties of compounds in the World Drug Index
the now well accepted “Rule-of-5” has been derived [25, 26]. It was concluded that
compounds are most likely to have poor absorption when MW > 500, calculated
octanol-water partition coefficient Clog P>5, number of H-bond donors >5 and
number of H-bond acceptors >10. Computation of these properties is now avail-
able as a simple but efficient ADME screen in commercial software. The “Rule-
of-5” should be seen as a qualitative absorption/permeability predictor [43], rather
than a quantitative predictor [140]. The “Rule-of-5” is not predictive for bioavail-
ability as sometimes mistakenly is assumed. An important factor for bioavailability
in addition to absorption is liver first-pass effect (metabolism). The property dis-
tribution in drug-related chemical databases has been studied as another approach
to understand “drug-likeness” [141, 142].

Other attempts have been made to try to define good leads. In general lead-like
properties are lower/smaller than drug-like properties. Thus, MW <350 and Clog
P<3 should be good starting points for leads [143, 144]. A “Rule-of-3” has been
proposed [145] for screening of small fragments, which says the good lead frag-
ments have MW <300, Clog P<3, H-bond donors and acceptors <3 and rotatable
bonds <3.

Similarly, in a study on drugs active as central nervous system (CNS) agents and
using neural networks based on Bayesian methods, CNS-active drugs could be
distinguished from CNS-inactive ones [145]. A CNS rule-of-thumb says that if the
sum of the nitrogen and oxygen (N +O) atoms in a molecule is less than 5 and if
the Clog P—(N+0)>0, then compounds are likely to penetrate to the BBB [146].
Another “rule” is PSA<90A%, MW <450 and log D at pH 7.4 of 1-3 [147]. In
designing CNS drugs it is important to distinguish BBB penetration and CNS
efficacy. The latter is a subtle balance between permeability, effect of BBB trans-
porters, lipophilicity, and free fraction in blood and brain [148].

These aforementioned analyses all point to a critical combination of physico-
chemical and structural properties [149], which to a large extent can be
manipulated by the medicinal chemist. This approach in medicinal chemistry has
been called property-based design [2]. Under properties in this context we intend
physicochemical as well as PK and toxicokinetic properties. These have been
neglected for a long time by most medicinal chemists, who in many cases in the
past only had the quest for strongest receptor binding as the ultimate goal.
However, this strategy has changed dramatically, and the principles of drug-like
compounds are now being used in computational approaches towards the rational
design of combinatorial libraries [150] and in decision making on acquisition of
outsourced libraries.

4
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2.1
Computation versus Measurement of Physicochemical Properties

2.11.1
QSAR Modeling

Calculation of many different one-, two- and three-dimensional descriptors for
building predictive QSAR models for physicochemical (and ADME /toxicity) prop-
erties is possible using a range of commercially available software packages,
such as ACD, SYBYL, Cerius?, Molconn-Z, HYBOT, VolSurf, MolSurf, Dragon,
MOE, BCUT, etc. Several descriptor sets are based on quantification of three-
dimensional molecular surface properties [151, 152] and these have been explored
for the prediction of, for example, Caco-2 permeability and oral absorption [16]. It
is pointed out here that a number of these “new” descriptors are often strongly
correlated to the more traditional physicochemical properties. An aspect largely
neglected so far is the concept of molecular-property space looking at the confor-
mational effects on physicochemical properties [153].

Numerous QSAR tools have been developed [152, 154] and used in modeling
physicochemical data. These vary from simple linear to more complex nonlinear
models, as well as classification models. A popular approach more recently became
the construction of consensus or ensemble models (“combinatorial QSAR”) com-
bining the predictions of several individual approaches [155]. Or, alternatively,
models can be built by running the same approach, such as a neural network of
a decision tree, many times and combining the output into a single prediction.

To build robust predictive models good quality training set and sound test set are
required. Criteria for a good set include sufficient coverage of chemical space, good
distribution between low- and high-end values of the property studied, and a suffi-
ciently large number of compounds. Models can be global (covering many types of
chemistry) or local (project-specific). There are many reasons why predictions can
fail [156] and medicinal chemists need to be aware of these. There is also a differ-
ence between a useful model and a perfect model. The latter does not exist!

In-house physicochemical data collections are growing rapidly through the use
of HTS technologies [157]. Therefore, the need for rapidly building and updating
is also increasing. Systems for automatic and regular updating of QSAR predictive
models have been reported [158] and we expect these to become more widespread.
A consequence of regularly updated in silico models is that the predicted values
will change too. This will require adapted ways of working by the chemists and
DMPK scientists in projects using more dynamic data generation and interpreta-
tion tools.

2.11.2
In Combo: Using the Best of two Worlds

In modern drug discovery speed and cost control are important in addition to high
quality. In silico virtual screening for drugability [159] is a good first step in library
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design and compound acquisition. Once compounds have been made for a tar-
geted project a well-balanced approach using both in silico predictions and in vitro
screening will be a good strategy to guide the programme in a cost-efficient
manner. New experimental data can be used to update predictive models regularly
so that the ongoing projects can benefit from the latest local and global models
available [158, 160].

2.12
Outlook

Physical chemistry plays a key role in the behavior of drugs. Measurement of the
key properties has been automated and industrialized to high throughput. The
data can and are used to build robust predictive models. These can in turn be used
to limit the use of experiments when not strictly needed. This is of course com-
pound saving and more cost-effective. Predictive models are also great tools in
virtual screening, prioritization decision making and guiding projects. The rest of
this book provides in-depth insight into some of the properties briefly discussed
in this introductory chapter.
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3
Drug lonization and Physicochemical Profiling
Alex Avdeef

Abbreviations

ABL aqueous boundary layer

ADME absorption, distribution, metabolism and excretion
BBB blood-brain barrier

BCS Biopharmaceutics Classification System

Caco-2 adenocarcinoma cell line derived from human colon

DMSO  dimethylsulfoxide
HEPES  N-2-hydroxyethyl-piperazine-N"-2-ethanesulfonic acid

GIT gastrointestinal tract

MDCK  Madin-Darby canine kidney

MES 2-(N-morpholino)ethanesulfonic acid
PAMPA  parallel artificial membrane permeation assay
uv ultraviolet

Symbols

pK. ionization constant

log Py octanol-water partition coefficient

3.1
Introduction

This chapter considers ionizable drug-like molecules and the effect of such ioniza-
tion on pharmaceutic properties. Most medicinal substances are ionizable [1]. The
biological medium into which these substances distribute embraces a range of pH
values. The ionization constant, pK,, can tell the pharmaceutical scientist to what
degree the molecule is charged in solution at a particular pH. This is important
to know, since the charge state of the molecule strongly influences its other physi-
cochemical properties.

Molecular Drug Properties. Measurement and Prediction. R. Mannhold (Ed.)
Copyright © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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The ionization constant plays an important role in absorption, distribution,
metabolism and excretion (ADME) of medicinal substances [2]. The effect of the
pK, in oral drug absorption arises from the pH dependence of drug permeability
across membrane barriers and the pH dependence of drug solubility in luminal
fluid [3-8]. The excretion of drugs can be modulated by pH control. For example,
the pH of urine can be altered with oral doses of ammonium chloride or sodium
bicarbonate to effect reabsorption of uncharged species (for therapeutic reasons)
or to ease excretion of ionized species (which may be toxic). Weak acids may be
excreted in alkaline urine and weak bases may be eliminated in acidic urine, pos-
sibly a lifesaving principle in the case of drug overdose [9]. The rate of dissolution
of an orally delivered solid-dosage form of the drug in acidic gastric fluid can be
strongly influenced by the pK, [10]. The strength and extent of protein binding or
of enzymatic transformation of the drug can depend on the pK, of the drug and/or
the ionizable functional group(s) in the binding or catalytic site [11, 12]. In this
chapter, the effect of the pK, in oral absorption (the “A” in ADME) will be stressed.
Underlying absorption are physicochemical properties such as dissolution, solubil-
ity, permeability and ionization, the four key components in the Biopharmaceutics
Classification System (BCS) [3].

3.1.1
Absorption, the Henderson—Hasselbalch Equation and the pH-partition Hypothesis

Nonionized molecules are usually better absorbed in the gastrointestinal tract
(GIT) than ionized molecules. In the intestine, water-soluble weak bases are better
absorbed from neutral pH regions (e.g. in the distal ileum), and weak acids are
better absorbed from mildly acidic regions (e.g. proximal jejunum). This was
rationalized by Brodie et al. [13], who introduced the pH-partition hypothesis to
explain the influence of pH on the intestinal absorption of ionizable drugs. In the
classic absorption experiments using rats, a drug solution at pH 7.4 was injected
intravenously and also perfused intestinally using solutions of varied pH. The
concentration of the drug in the luminal perfusate was adjusted until there was
no net transport across the intestinal wall, so that it was possible to define the
blood-lumen barrier ratio:

_ [druglsioon _ (1+ 10_pK3+PHBLOOD)
[drug]LUMEN (1 + 10_PK3+PHLUMEN )

1)

The last part of Eq. (1) is derived from the pH dependence of permeability, given
a pH gradient between the two sides of the intestinal barrier, based on the well
known Henderson—Hasselbalch equation. Direct measurement of in situ intestinal
perfusion absorption rates confirmed this pH dependence [14].

The pH-partition hypothesis, now widely accepted in pharmaceutical research,
suggests that membrane permeability will be highest at the pH where the mole-
cule is least charged; however, this is also the pH where the molecule is least
soluble. (In Brodie’s work, the compounds tested have relatively high water solu-
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bility.) At the site of absorption, the amount of the uncharged species and the
tendency of the neutral species to cross the phospholipid membrane barrier are
both important predictors of absorption. The intrinsic permeability coefficient,
Py, characterizes the membrane transport of the uncharged species. The con-
centration of the uncharged species, Cy, depends on the dose, the solubility, the
pK. of a molecule and the pH at the site of absorption, often according to the
Henderson-Hasselbalch equation [8].

However, for poorly soluble molecules, the classical view of pH dependence of
absorption needs to be qualified. Bergstrom et al. [15] have shown that many spar-
ingly soluble molecules show solubility pH profiles that cannot be simply pre-
dicted by the Henderson—Hasselbalch equation. Avdeef et al. [16] have shown that
the classical Brodie pH-partition hypothesis can break down when low-solubility
and high-permeability drugs are considered, where the pH effect is actually inverted
(i-e. the pH where the drug is more charged showing higher absorptive flux poten-
tial than the pH where the drug is more neutral).

3.1.2
“Shift-in-the-pK,”

The aim of this chapter is to focus on three physicochemical properties where the
ionization constant, pK,, relates to a critical distribution or transport function: (i)
octanol-water and liposome-water partitioning, (ii) solubility (ionized species and
neutral species aggregation, and salt effects) and (iii) permeability (artificial mem-
brane and cultured cell models). The logarithm of the physicochemical property
versus pH (“log-log”) plots can indicate both the true pK, and an apparent pK,, in
various circumstances called: the “octanol pK,” (pK{"), “membrane pK,”
(pKYM™), “lonized aggregate pK,” (pKi®“"), “neutral aggregate pK,” (pKeeV),
“Gibbs’ pK,” (pKS™®) and “flux pK,” (pK:i™™). Such log-log plots are either
hyperbolic or sigmoidal in shape, with domains characterized by (0, £1, 2, ...)
slopes. At the points where the curves bend (slope at half-integral values), the pH
is equal either to the true or the apparent pK..

The evaluation of the apparent ionization constants (i) can indicate in partition
experiments the extent to which a charged form of the drug partitions into the
octanol or liposome bilayer domains, (ii) can indicate in solubility measurements,
the presence of aggregates in saturated solutions and whether the aggregates are
ionized or neutral and the extent to which salts of drugs form, and (iii) can indicate
in permeability measurements, whether the aqueous boundary layer adjacent to
the membrane barrier, limits the transport of drugs across artificial phospholipid
membranes [parallel artificial membrane permeation assay (PAMPA)] or across
monolayers of cultured cells [Caco-2, Madin-Darby canine kidney (MDCK), etc.].

Section 3.2 begins with pK, definitions and a brief description of the state-of-
the-art pK, measurement methods, stressing the needed accuracy, especially with
molecules which possess very low aqueous solubility. In a practical way, the ioniza-
tion constant is treated as a property of the molecule, usually defined at 25°C in
a nonbuffered medium of 0.15M potassium (or sodium) chloride aqueous
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solution. This reference medium defines the “true” pK, of the molecule [8, 17]. In
physicochemical profiling, the environment may contain membranes, cells and
proteins, and may not be suitable for completely dissolving the molecule. In this
“environmental” medium, the pK, may appear to be different from the “true”
value, as graphically indicated in the above-mentioned log-log plots. The appear-
ance of a shift-in-the-pK, and how this shift is used to determine physicochemical
properties is the subject of Sections 3.3-3.5. Section 3.3 discusses the octanol-
water distribution profile, log D,, as a function of pH. The sigmoidal curve in the
log-log plot indicates both the true and the “octanol pK,” [18]. Section 3.4 considers
solubility pH profiles, which can indicate the true pK,, and, under certain condi-
tions, the “Gibbs’ pK,” [19]. Furthermore, from the shape of the hyperbolic-
sigmoidal curves and the value of the “apparent pK,,” it is possible to recognize
the presence and the charge state of aggregates of low-soluble molecules [20].
Section 3.5 deals with permeability profiles, based on cellular models (Caco-2,
MDCK, etc.) and artificial membrane models (PAMPA). From the apparent per-
meability profile, log P,,, versus pH, the “flux pK,” can indicate the extent to which
membrane transport is limited by the aqueous boundary layer [21]. Another appar-
ent pK, can indicate permeability of ionic form of the molecule or active transport
in the case of cellular permeability [22].

3.2
Accurate Determination of lonization Constants

The classic (long out-of-print) book by Albert and Serjeant [17] has taught several
generations of physical chemists (including the author) how to properly measure
ionization constants. The two methods of choice for the measurement of ioniza-
tion constants are potentiometry [2, 23-31] and ultraviolet (UV) spectrophotometry
[32-47]. The UV method is usually more sensitive of the two and thus requires
less sample (10-50 versus 200-5000 pM, respectively). However, the potentiomet-
ric method can be universally applied, whereas the spectrophotometric method
requires not only a measurable UV chromophore, but also one that measurably
alters with pH changes. A small but significant number of drug-like substances
cannot be characterized by UV. With care, both methods can result in good pK,
reproducibility (£0.02) for water-soluble compounds. For sparingly soluble com-
pounds, the reproducibility may be poorer (+0.1). Many other techniques for
determining pK, have been reported [8], but the above two methods are best suited
for pharmaceutical applications.

3.2
Definitions — Activity versus Concentration Thermodynamic Scales

The ionization reactions for acids, bases and ampholytes (diprotic) may be repre-
sented by the general forms
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HA &S A +H* K,=[A"][H*]/[HA] (2a)
BH*< B+H* K,=[B][H*]/[BH"] (2b)
XH; & XH+H" K, =[XH][H"]/[XH,"] (2¢)
XH&s X +HY K,=[X"][H*])/[XH] (2d)

Listed after the equilibria are the corresponding equilibrium quotients. The law
of mass action sets the concentration relations of the reactants and products in a
reversible chemical reaction. The negative log (logarithm, base 10) of the quotients
in Egs. (2a)—(2d) produces the familiar Henderson—Hasselbalch equations, where

“» ”

p” represents the operator “~log”:

pK,=pH +log([HA]/[A"]) (32)
pK.=pH + log([BH*]/[B]) (3b)
pK. = pH +log([XH,*]/[XH]) (3¢)
pK.,=pH +log([XH]/[X]) (3d)

Equations (3a)—(3d) indicate that when the concentration of the free acid, HA (or
conjugate acid, BH"), equals that of the conjugate base, A~ (or free base, B), the
pH has the special name, “pK,”.

All equilibrium constants in the present discussion are based on the concentra-
tion (not activity) scale. This is a perfectly acceptable thermodynamic scale, pro-
vided the ionic strength of the solvent medium is kept fixed at a “reference” level
(therefore, sufficiently higher than the concentration of the species assayed). This
is known as the “constant ionic medium” thermodynamic state. Most modern
results are determined at 25°C in a 0.15M KCI solution. If the ionic strength is
changed, the ionization constant may be affected. For example, at 25°C and 0.0M
ionic strength, the pK, of acetic acid is 4.76, but at ionic strength 0.15 M, the value
is 4.55 [24].

The ionic-strength dependence of ionization constants can be predicted by the
Debye-Hiickel theory [8, 17, 27]. In the older literature, values are reported
most often at “zero sample and ionic strength” and are called “thermodynamic”
constants. The constants reported at 0.15M ionic medium are no less thermody-
namic. Fortunately, a result determined at 0.15M KCl background can be
transformed to another background salt concentration, provided the ionic strength
remains below about 0.3M [27]. It is sometimes convenient to convert constants
to “zero ionic strength” to compare values to those reported in older literature.
A general ionic strength correction equation is described in the literature
26, 27].

The effect of temperature on acid or base pK, values cannot be reliably predicted
[2, 17, 23]. For many nitrogenous bases, the pK, decreases by 0.1-0.3 for every
10°C rise in temperature. For some carboxylic acids (e.g. acetic, benzoic, salicylic
acids), the pK, remains essentially unchanged between 25 and 37°C.
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3.2.2
Potentiometric Method

In pH-metric titration, precisely known volumes of a standardized strong acid (e.g.
HCI) or base (e.g. KOH) are added to a vigorously stirred solution of a protogenic
substance, during which pH is continuously measured with a precision combina-
tion glass electrode, in a procedure confined to the interval pH 1.5-12.5. The sub-
stance (200uM or higher in concentration) being assayed is dissolved in 2-20mL
of water or in a mixed solvent consisting of water plus an organic water-miscible
cosolvent [e.g. simple alcohols, acetonitrile or dimethylsulfoxide (DMSO)]. An
inert water-soluble salt (0.15M KCl) is added to the solution to improve the mea-
surement precision, and to mimic the physiological ionic strength. Usually, the
reaction vessel is thermostated at 25 °C and a blanket of argon (not helium) bathes
the solution surface.

The plot of pH against titrant volume added is called a potentiometric titration
curve. The latter curve is usually transformed into a Bjerrum plot [8, 24, 27], for
better visual indication of overlapping pK,s or for pK.s below 3 or above 10. The
actual values of pK, are determined by weighted nonlinear regression analysis
[25-27).

3.23
pH Scales

To establish the operational pH scale, the pH electrode can be calibrated with a
single aqueous pH 7.00 phosphate buffer, with the ideal Nernst slope assumed.
As Egs. (2a)-(2d) require the “free” hydrogen ion concentration, an additional
electrode standardization step is necessary. That is where the operational scale is
converted to the concentration scale p.H (= —log [H"]) as described by Avdeef and
Bucher [24]:

pH=0o+kp.H + ju[H*]+ jouK, /[H'] (4)

where K, is the ionization constant of water. The four parameters are empirically
estimated by a weighted nonlinear least-squares procedure using data from alka-
limetric titrations of known concentrations of HCI (from pH 1.7 to 12.3). Typical
aqueous values of the adjustable parameters at 25°C and 0.15M ionic strength
are 00=0.08+0.01, k;=1.001+0.001, j;=1.0+£0.2 and jouy=-0.6+0.2. In cosolvent
solutions, these values usually change and can be readily determined. Such a
standardization scheme extends the range of accurate pH measurements, and
allows pK.s to be assessed as low as 0.6 and as high as 13.0 [8].

324
Cosolvent Methods

If the compound is virtually insoluble (solubility<1pgmL™), then a potentiomet-
ric mixed solvent approach can be tried [2, 28-30]. For example, the pK, of the
antiarrhythmic amiodarone, 9.06+0.14, was estimated from water—-methanol
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mixtures, notwithstanding that the intrinsic solubility of the molecule in water is
about 0.006 pgmL™ [8].

The most explored solvent systems are based on water—alcohol mixtures, aceto-
nitrile-water and DMSO-water [8]. Where possible, methanol is the solvent of
choice, because its general effect on pK.s has been studied so extensively. It is
thought to be the least “error-prone” of the common solvents [28].

Mixed-solvent solutions of various cosolvent-water proportions are titrated and
psK. (the apparent pK,) is measured in each mixture. The pK, of acids increases
and that of bases decreases with increasing proportion of organic solvent. This
depression of ionization is due to decreases in the dielectric constant of the mixed
solvent. The estimated aqueous pK, is deduced by extrapolation of the p,K, values
to zero cosolvent. Plots of pK, versus weight percent organic solvent, R,=
0-60wt%, at times show either a “hockey-stick” shape or a “bow” shape [28]. For
R, >60wt%, “S”-shaped curves are sometimes observed. For values of R, <60 wt%,
the nonlinearity in p,K, plots can be ascribed partly to electrostatic long-range
ion—ion interactions [28].

3.25
Recent Improvements in the Potentiometric Method Applied to
Sparingly Soluble Drugs

In a recent study of very-sparingly soluble drugs, four methods of pK, determina-
tion were compared, using both methanol-water and DM SO-water solutions [48].
Potentiometric methods performed slightly better than UV based methods. In one
of the recently modified [48] potentiometric methods [19, 49, 50], it is possible to
determine the pK, even if there is precipitation during a portion of the titration, in
either aqueous or cosolvent solutions. This is because the improved potentiometric
method can determine solubility and ionization constants simultaneously in the
same titration. It may very well be that at least some of the “hockey-stick” nonlin-
earity mentioned in the preceding section arises from the presence of some pre-
cipitation of the sample, for which no provision had been made in the early studies.
This is an interesting conjecture, worthy of further investigation.

Furthermore, pH electrode calibration can be performed in situ by the new
method [48], concurrently with the pK, determination. This is a substantial improve-
ment in comparison to the traditional procedure of first doing a “blank” titration
to determine the four Avdeef~Bucher parameters [24]. The traditional cosolvent
methods used with sparingly soluble molecules can be considerably limited in the
pH <4 region when DMSO-water solutions are used. This is no longer a serious
problem, and routine “blank” titrations are now rarely needed in the new in situ
procedure.

3.2.6
Spectrophotometric Measurements

The most effective spectrophotometric procedures for pK, determination are based
on the processing of whole absorption curves over a broad range of wavelengths,
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with data collected over a suitable range of pH. Most of the approaches are based
on mass balance equations incorporating absorbance data (of solutions adjusted
to various pH values, with or without buffers) as dependent variables and equilib-
rium constants as parameters, refined by nonlinear least-squares refinement,
using Gauss—Newton, Marquardt or Simplex procedures.

Since the spectroscopic analysis methods are nonlinear, it is necessary to initiate
calculations with an approximate pK, and single-species molar absorptivity pro-
files. In complicated equilibria, uninformed guessing of pK,s and individual-
species molar absorptivity coefficients can be problematic. Elegant mathematical
methods have evolved to help this process of supervised calculation. Since not all
species in a multiprotic compound possess detectible UV chromophores, and
often more than one species have nearly identical molar absorptivity curves,
methods have been devised to assess the number of spectrally active components
[33]. With mathematically ill-conditioned equations, parameter shift damping pro-
cedures are required. Gampp et al. [36] considered principal component analysis
and evolving factor analysis methods in identifying the presence and stoichiome-
tries of the absorbing species.

Tam et al. [37-47] developed an impressive generalized method for the determi-
nation of ionization constants and molar absorptivity curves of individual species,
using diode-array UV spectrophotometry, coupled to an automated pH titrator.
Species selection was effected by target factor analysis. Multiprotic compounds
with overlapping pK,s have been investigated; binary mixtures of ionizable
compounds have been considered; assessment of microconstants have been
reported.

3.2.7
Use of Buffers in UV Spectrophotometry

In the UV method, the control of pH is most often done by the use of buffers.
Good et al. [51] pointed out the shortcomings of traditional buffers such as phos-
phate, Tris and borate, due to their reactivity with biological systems, as well as
with the analyte. Phosphate buffers are especially problematic with sparingly
soluble basic drugs. A number of zwitterionic buffers were then synthesized to
overcome the limitations [51]. These included such buffers as MES [2-(N-morpho
lino)ethanesulfonic acid], HEPES (N-2-hydroxyethyl-piperazine-N’-2-ethanesul-
fonic acid), and a series of similar molecules, collectively known as the “Good
buffers”. In concentrations at or below 0.05M, minimal interferences are encoun-
tered. The monograph by Perrin and Dempsey [52] compiled extensive (and practi-
cal) tabulations of buffer properties (another valuable book, long out of print).
Avdeef and Bucher [24] investigated the use of universal buffers in potentiomet-
ric titrations. Recently, such a buffer system, formulated with several of the Good
components, has been designed specifically for robotic applications, where auto-
mated pH control in 96-well microtiter plates is required, with minimal interfer-
ence to the UV measurement [48]. This universal buffer has a nearly perfectly
linear pH response to additions of standard titrant in the pH 3-10 region [8, 48].
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3.2.8
pK. Prediction Methods and Software

Perrin et al. [53] published a monograph on the prediction of pK, values, compiling
a large number of molecular fragment equations, based on linear free energy
relationships. Their monograph (unfortunately, long out of print) is often the
starting point in commercial pK, prediction programs. One of the early computer
programs, from Advanced Chemistry Development [54] can predict pK, values
with fair precision (+0.4 and sometimes much better). A more recent product
comes from Pharma Algorithms [55]. A web-based pK, prediction program is
available from ChemAxon [56]. All three prediction programs are excellent and
it is often useful to average the predictions from all three sources, to build a
“consensus” value.

The prediction programs do better with established drug molecules than with
test compounds from newly synthesized classes. Usually, prediction programs do
poorly with molecules that possess internal H-bonds associated with the ionizing
groups, although the more actively supported programs seem to be improving
in this area. For example, some of the predicted pK, values in flavonoids, fluoro-
quinolones and in molecules like doxorubicin can be in error by 3—4 orders of
magnitude. The predicted pK, values are generally quite good for giving the phar-
maceutical scientist an idea of the charge state of a molecule at a particular pH.
However, for the purpose of using the pK, values to assess physicochemical prop-
erties, as presented later in this chapter, predicted pK, values are not yet good
enough. Accurately measured pK, values are still required, as will become appar-
ent in Sections 3.3-3.5.

329
Tabulations of lonization Constants

The “blue book” compilations [57-59] recommended for experts in the field are
probably the most comprehensive sources of ionization constants collected from
the literature. On the other hand, the “red books” contain critically selected values
[60]. A useful list of 400 pK, values of pharmaceutically important molecules has
been published [23]. Additionally, a more recent compilation of pK, values of about
250 drug-like molecules may be found in Ref. [8].

33
“Octanol” and “Membrane” pK, in Partition Coefficients Measurement

The octanol-water partition coefficient, P, (often reported as log P,), is a particu-
larly useful parameter in quantitative structure—activity relationships, applied to
prediction of properties related to drug absorption, distribution, metabolism and
excretion [61, 62]. Although the traditional log P, measurements have been done
by the shake-flask method [63, 64], high-performance liquid chromatography-
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based approaches have become the methods of choice in pharmaceutical research
[65-69], with many protocols adapted to 96-well microtiter plate formats [68, 69].
The Dyrssen dual-phase potentiometric log P, technique [8, 18, 27, 31] in certain
applications is singly valuable, especially when the drug-like substance does not
have a sensitive UV chromophore, or is partially ionized at physiological pH, since
the ionization constant, pK,, may be needed for log P, determination (cf. Eq. 8
below). In the potentiometric method both pK, and log P, are determined in the
same assay [8, 27]. The method can be applied to substances with several overlap-
ping pK.s and to substances which undergo ion-pair partitioning.

Many excellent computer programs are available for predicting log P, from
two-dimensional structures. The quality of predictions has risen over the years to
the point that routine log P, measurements are not regularly done at some phar-
maceutical companies, but rather, calculated values are used. It is worth noting
that log P, values of newly synthesized classes of drug-like compounds some-
times are still poorly predicted and probably there will be the need for judicious
log P, measurements for years to come.

3.3.1
Definitions

The partition coefficient of an acid or a base in the nonionized species form,
Py, is defined by the equilibria and quotients:

HA t) HAoct Po]jt = [HA]oct /[HA] (53‘)
B S Boct Polgt = [B]oct/[B] (Sb)

where [HA], and [B], are the concentrations of the neutral species in the organic
phase, with reference to the volume of octanol; the unsubscripted concentrations
are in aqueous solution, based on aqueous volume. Rigorously, activity units
would be used in Egs. (5). However, the practice in the pharmaceutical sciences
is to associate concentration units (molL™) with the partition coefficient
equations.

The partition coefficient is a thermodynamic constant, defined in terms of a
single species (neutral or charged) in the dual-phase distribution, and does not itself
depend on pH. Since protogenic substances undergo pH-dependent ionization,
the actual distribution of different species between the two phases can change with
pH. The term describing this pH-dependent distribution is called the octanol-
water distribution coefficient (also, the apparent partition coefficient) and is defined
as the ratio of the concentrations of all of the drug species dissolved in the organic
phase divided by the sum of the concentration of all of the drug species dissolved
in the aqueous phase, as, for example:

D= [X 7 Joct + [XH]oet + [XH7 Joe: (X7, + [XH], + [XH3 1%, 1 6
U X+ [XH]4[XH;]  [X]+XH]4[XHI] e (©)
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The asterisked quantity is defined in concentration units of moles of species dis-
solved in the organic phase per liter of aqueous phase solution. The octanol-water
volume ratio, o= Vou/ Vaarer, takes into account differences in volumes of the two
phases. In pharmaceutical applications, practical values of 7, range from 0.003 to
3 (and sometimes higher).

Consider the partitioning of a lipophilic base, B. The uncharged species, B, will
distribute into the organic phase more extensively than the charged species, BH".
For the partitioning of the latter ion, the ion-pair partition coefficient may be

defined as:

Pl = B o )
[BH']

Such ion-pair constants are “conditional”, in that they depend on the concentration
of the counterion with which the charged drug molecule enters into the octanol
phase as an ion-pair. This is due to the low dielectric property of octanol,
inducing charge neutrality upon uptake of charged drug molecules. Extraction
constants may be used to explicitly include the participation of the counterion
[18].

With mass balance consideration, along with Egs. (2b), (5b) and (7), Eq. (6) may
be transformed into:

_ P 10*PRPR) 4 PR
oct 1+ 10*(PKa—pH)

(®)

“,»

with the “+” sign in “+” referring to acids and “~” to bases. Note also that D, in
Eq. (8) is a function of pH and equilibrium constants, and is independent of con-
centration of drug (provided that the concentration of the counterion is kept con-
stant and significantly greater in concentration than that of the drug). Distribution
functions for more complicated cases are described elsewhere [18].

In the traditional shake-flask method, the apparent partition coefficient, log D,
is measured, usually at pH 7.4 (sometimes at pH 6.5). Different buffers are used
to control each pH used in the determinations [70]. Usually, in a comprehensive
study, several pH measurements are made, and values of log D, are plotted
against the pH. This plot is often called the “lipophilicity profile”. One can deter-
mine the true partition coefficients (log P,.) and the ionization constants from the
features in such a curve.

3.3.2
Shape of the Log D,—pH Lipophilicity Profiles

Figure 3.1 shows an example of a monoprotic base, pindolol, lipophilicity profile,
as a function of pH. The two limiting slopes in the curve are zero and the slope
in between is +1 (=1 for acids). The maximum value of log D, is equal to log Py,
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Fig. 3.1 Octanol-water distribution (log D) reanalyze the data, with the refined results
versus pH profile for pindolol, based on data listed in the figure. The root mean square
reported by Barbato et al. [70]. The pCEL-X deviation in the fit was 0.1 log unit.
computer program (pION) was used to

(and the minimum value is equal to logPl; in a fully formed sigmoidal plot, as
in Fig. 3.1). At the upper bend in the curve, pH is equal to the pK, of the molecule;
at the lower bend in the curve, the pH is equal to the “octanol” pK,, i.e. pK2.
The “bend” in the lipophilicity curve spans 3.3 pH units, 1.66 pH units to each
side of each pK,, as suggested in Ref. [18]. The “octanol” pK, is defined by the
aqueous pH at the point where the ionized and nonionized drug concentrations
are equal in the octanol phase, according to the conditional equilibrium expression
(HA)oer S (KA oo+ H.

The lipophilicity profile of an acid is a mirror image of the shape in Fig. 3.1, i.e.
the maximum (neutral-species) partitioning occurs at low pH and the minimum
(ion-pair) partitioning at high pH. Other shapes are described in the review by
Avdeef [18].

333
The “diff 3-4” Approximation in log D,.—pH Profiles for Monoprotic Molecules

For multi-pH octanol-water distribution measurements in 0.15M NaCl or KCl
solutions, the difference between the true pK, and pKS“" (and between logPX,
and logP),) is about 3 log units for bases and 4 log units for acids. This
approximation appears to hold for simple compounds, where atomic charge is
largely localized on an atom. Smaller differences are seen in aromatic systems,
where the charge can be substantially delocalized [8]. Table 3.1 shows octanol-
water examples of the relative pK, “shifts” supporting the “diff 3-4” approximation.
Note that the diff in Fig. 3.1 is 3.25 for pindolol; the value is greater than 3, since
the ionic strength, 0.1M, is less than the 0.15M on which the approximation
is based.
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Tab. 3.1 Octanol-water and liposome-water partition coefficients’.

Compound pK. Octanol-water Liposome-water

logPc: pK>"  |pKZ —pK.| logPiem PKY™  [pKY™ —pK|

Acids
ibuprofen 445  3.97 8.47  4.02 3.80 6.44 1.99
diclofenac 3.99 451 782 3.83 4.34 5.80 1.81
phenylvaleric acid 459 292 846  3.87 3.17 6.10 1.51
warfarin 490 3.25 8.61 3.71 3.46 6.98 2.08
average shift+SD 3.9+0.1 1.8+0.3

Bases
lidocaine 7.96  2.45 498  2.98 2.39 6.79 1.17
phenylbutylamine 10.50 2.39  7.66  2.84 3.02* 10.59 -0.09
procaine 9.04> 2.14  6.09 295 2.38 7.42 1.62
propranolol 9.53 348 683 270 3.45 8.69 0.84
tetracaine 8.49° 3,51 520  3.29 3.23 7.37 1.12
average shift+SD 3.0+0.2 0.9+0.6

1 Liposome—water partition potentiometric determinations, 25°C, 0.15M KCI [8, 71].
Liposomes were made of large (phosphatidylcholine) unilamellar vesicles.

2 Second pK, is 2.29.

Second pK, is 2.39.

4 Predicted from logPY[8].

w

The relationship between diff log P, and the pK, values in monoprotic
substances is:

log Y, —log P, = +(pK2“" — pK,) 9)

“«, »

with the “+” sign in “£” applicable to acids and “-” to bases.

334
Liposome-Water Partitioning and the “diff 1-2” Approximation in log Dyey—pH
Profiles for Monoprotic Molecules

For multi-pH liposome—water distribution measurements in 0.15M NaCl or KCl
solutions, the difference between the true pK, and pKM™ (and between log Piiy
and logPjzy) is about 1 log unit for bases and 2 log units for acids. Liposomes
formed from phosphatidylcholine have a tendency to stabilize the charged drug
more effectively than that in the octanol-water system [71]. Table 3.1 shows
liposome-water examples of the relative pK, “shifts.” The average values cited in
the examples are close the “diff 1-2” approximation noted above.
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3.4
“Gibbs” and Other “Apparent” pK, in Solubility Measurement

3.4.1
Interpretation of Measured Solubility of lonizable Drug-Like Compounds
can be Difficult

The measurement of solubility of drug-like substances is often surprisingly prob-
lematic [8, 31]. This is because modern drug discovery programs tend to select
active compounds that are in high molecular weight, are lipophilic and are very
sparingly soluble in aqueous solution [4]. The dissolution of compounds from
solid dosage forms may accompany polymorphic transformations, as active solids
transform into thermodynamically more stable forms, often notably less soluble
than the original form of the solid. The resultant aqueous solutions are often
complicated by the presence of not only multiply charged forms of drug, but
also by the presence of aggregates, micelles and complexes (formed with
constituents of the dissolution medium) [20, 72-75]. The interpretation of
solubility—pH curves can be challenging, and the inference of pH dependence
from single pH measurements based on the use of the Henderson—-Hasselbalch
equation can be unreliable [15, 20]. If not long enough a time is taken for the
solubility equilibration, measured results are complicated by time-dependent
changes.

3.4.2
Simple Henderson—Hasselbalch Equations

The basic relationships between solubility and pH can be derived for any given
equilibrium model. The “model” refers to a set of equilibrium equations and the
associated equilibrium quotients. In a saturated solution, three additional
equations need to be considered, along with the ionization Egs. (2a)—(2d),
which describe the equilibria between the dissolved acid, base or ampholyte in
solutions containing a suspension of the (usually crystalline) solid form of the

compounds:
HA(s) & HAS,=[HA]/[HA(s)] =[HA] (10a)
B(s)$ BS,  =[BJ/[B(s)] =[B] (10Db)
XH(s) & XHS, = [XH]/[XH(s)] = [XH] (10¢)

The concentrations of species in the solid phase, [HA(s)], [B(s)] and [XH(s)], by
convention are taken as unity. Hence, the quotients in Egs. (10) reduce to the
concentrations of the neutral species in the saturated solution, each called the
intrinsic solubility of the compound, S,.

In a saturated solution, solubility, S, at a particular pH is defined as the sum of
the concentrations of all of the species dissolved in the aqueous solution:
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S=[A"]+[HA] (11a)
S=[BH"]+[B] (11b)
S=[XH; |+ [XH]+[X"] (11¢)

In Egs. (11), [HA], [B] and [XH] are constant (intrinsic solubility), but the other
concentrations are variable. The next step involves conversions of all variables into
expressions containing only constants and [H*] (as the independent variable).
Substitution of Egs. (2) and (10) into (11) produces the desired equations.

S=S,-(10%FH-PK) 4 1) (12a)
S = Sy -(107(®H-PKa2) 4 10~ (PH-PKa1) 1. 1) (12b)

where in Eq. (12a), the “+” in “+” refers to acids and “~” refers to bases. Equation
(12b) is that of an ampholyte. The equations for other more complicated cases are
summarized elsewhere [76].

Figure 3.2(a) shows a plot of log S versus pH for naproxen, based on re-analysis
(unpublished) of the shake-flask [49, 77] and microtiter plate [20] data reported
in the literature. The dashed curves in Fig. 3.2 were calculated with the simple
Henderson—-Hasselbalch equations. For pH<<pK,, the function reduces to the
horizontal line log S=log S,. For pH>>pK,, log S is a straight line as a function
of pH, exhibiting a slope of 1 (and an intercept of log S,—pK,). Where the slope
is 0.5, the pH equals to the pK..

Figure 3.2(b) shows a plot of log S versus pH for atenolol, based on the shake-
flask data reported in the literature [49]. For pH >>pK,, the function again reduces
to the horizontal line log S=log S,. For pH<<pK,, log S is a straight line as a
function of pH, exhibiting a slope of —1. Where the slope is 0.5, the pH=pK,.

Figure 3.2(c) shows an example of an ampholyte, labetolol. The log S versus pH
shake-flask data were taken from the literature [49]. Ampholyte parabolic-shaped
curves show features of both an acid and a base profile.

343
Gibbs’ pK, and the “sdiff 3-4” Approximation

Although Fig. 3.2 properly conveys the shapes of solubility—pH curves in saturated
solutions of uncharged species, according to the Henderson—Hasselbalch equa-
tion, the indefinite ascendancy of the dashed curves in the plots can be misleading.
When pH changes elevate the solubility, at some value of pH, the solubility
product of the salt will be reached, causing the shape of the solubility—pH curve
to level off, as indicated in Fig. 3.2(a) for pH >8.38.

As a “rule of thumb,” in 0.15M NaCl (or KCI) solutions titrated with NaOH (or
KOH), acids start to precipitate as salts above log (S/S¢)=4 and bases above log
(S/So)=3. This has been called the “sdiff 3-4” approximation [49]. With other
counterions, such as phosphate, different trends are evident [15].
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Fig. 3.2 Solubility profiles: log S-pH. The labetolol). (a) Naproxen (acid): data reported
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precipitate in equilibrium with solution of the  shake-flask data [49], squares representing
drugs, were calculated by Henderson— shake-flask data [77], diamonds representing
Hasselbalch equations. The dotted horizontal high-throughput miniaturized shake-flask
lines are estimates of the solubility of the (microtiter plate) data [16]. (b) Atenolol
charged form of the drugs, using either actual (base): data based on shake-flask
data (naproxen) or estimates based on the determination [49]. (c) Labetolol (ampholyte):
sdiff 3—4 approximation (atenolol and data based on shake-flask method [49].

Consider the case of the monoprotic acid, HA, which forms the sodium salt
(in 0.15M NaCl) when the solubility product, K, is exceeded. In additions to

Eqs. (2a) and (10a) above, one needs to add the following equation to treat
the case.

Na*A*(s) & Na'+ A K, =[Na*][A"]/[Na*A(s)]=[Na*][A7] (13)

Effective solubility is still defined by Eq. (11a). However, Eq. (11a) is solved under
three limiting conditions with reference to a special pH value. (i) If the solution
pH is below the conditions which lead to salt formation, the solubility-pH curve
has the shape described by Eq. (12a) (dashed curve in Fig. 3.2a). (ii) If pH is above
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the characteristic value where salt starts to form (given high enough a sample
concentration), Eq. (11a) is solved by taking [A7] to be a constant and [HA] a
variable:

S= [A’]+[A’]~[I;+] = 5;-(1+107PHPK) (14)

a

where S; (= K,/[Na*]) refers to the solubility of the conjugate base of the acid, which
depends on the value of [Na*] and is hence a conditional constant. Since pH >>pK,
and [Na*] may be assumed to be constant, Eq. (14) reduces to that of a horizontal
dotted line in Fig. 3.2(a): log S=log S; for pH >8.38. (iii) If the pH is exactly at the
special point marking the onset of salt precipitation, the equation describing the
solubility—pH relationship may be obtained by recognizing that both terms in Eq.
(11a) become constant, so that:

S=S,+S; (15)

Consider the case of a very concentrated solution of the acid hypothetically titrated
from pH well below its pK, to the point where the solubility product is first
exceeded. At first, the saturated solution can only have the unionized molecular
species precipitated. When the solubility reaches the solubility product, at a par-
ticular elevated pH, salt starts to precipitate, but at the same time there may be
remaining free acid precipitate. The simultaneous presence of the solid free acid
and its solid conjugate base invokes the Gibbs’ phase rule constraint, fixing the
pH and the solubility, as long as the two interconverting solids are both present.
As the titration progresses, the alkali titrant converts the remaining free acid solid
into the solid salt of the conjugate base. During this process, pH is rigorously
fixed, in a manner of a “perfect” buffer. This special pH point has been designated
the Gibbs’ pK,, i.e. pKS™® [19]. The equilibrium equation associated with this
phenomenon may be stated as:

HA(s) & A(s)+ H KBS = [H [[A~(s)]/[HA(s)] = [H"] (16)

This is a conditional constant, depending on the value of the background
[Na*].

Since solubility is fixed during the solids interconversion, one may set Eq. (12a)
equal to Eq. (14), to get in logarithmic form the expression

logS,—1logS;=+(pKE®ES - pK,) (17)

with “+” in “+” for acids and “~” for bases (cf. Eq. 17 to 9). Figure 3.2(a) shows the
solubility—pH profile for naproxen, where the difference, Eq. (17), is very close to
4 log units, typically found with simple acids in the presence of 0.15M NaCl. For
basic drugs, the difference is approximately 3 log units. These relations have been
called the “sdiff 3-4” approximation [8].
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344
Aggregation Equations and “Shift-in-the-pK,” Analysis

When a compound forms a dimer or a higher-order oligomer in aqueous solution,
the characteristic solubility—-pH profile takes on a shape not predicted by the
Henderson-Hasselbalch equation and often indicates an apparent pK, that is dif-
ferent from the true pK,. Figure 3.3 shows several examples of sparingly-soluble
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calculated with equations where aggregation
was taken into account [20]. The bases
butacaine, clotrimazole and dipyridamole
indicated uncharged aggregates. Astemizole
indicated cationic aggregates and mefenamic
acid appeared to indicate anionic aggregates
(with evidence for salt precipitation for
pH>6.5). Glibenclamide consistently behaved
as a mixed-charge aggregate.
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molecules forming both charged and uncharged aggregates [20]. Bases in Fig.
3.3(b=Dbutacaine, c=clotrimazole and d=dipyridamole) indicate an apparent pK,
that is Jower than the true value. This has been hypothesized to indicate the forma-
tion of uncharged aggregates [8, 10, 20, 31]. Conversely, the apparent pK, is greater
than the true value in the remaining base, Fig. 3.3(a=astemizole), indicating the
formation of cationic aggregates [20]. Furthermore, for charged aggregates, the
slope in the solubility profile curve (in the diagonal region) is greater than one,
and indicates the average degree of aggregation of the charged species [20].
Mefenamic acid (Fig. 3.3f) indicates formation of dimeric anionic aggregates.
Glibenclamide (Fig. 3.3c) with a near unit slope, but a pK, “shift,” indicates a
mixed-charge aggregate [20].

As the above examples suggest, the pK,-shift method can be used as a quick
alert tool. When a log S versus pH plot is inspected and the true pK, is known
independently, it can be quickly surmised whether aggregates are present and
whether these are due to the neutral or the charged form of the drug. Moreover,
the intrinsic solubility may be calculated from the magnitude and the direction of
the pK, shift. If an uncharged molecule forms aggregates, weak acids will indicate
an apparent pK, higher than the true pK, and weak bases will indicate an apparent
pK. lower than the true pK,. If the observed shifts are opposite of what is stated
above, then the charged (rather than the neutral) species is involved in the
aggregation.

Consider the formation of the oligomeric mixed-charge weak acid species,
(AH-A)"". In addition to the required equilibrium Egs. (2a) and (10a), the addi-
tional reaction is needed to describe the model:

nA~+nHA & (AH-A)” K*=[(AH-A)" [HAT'[A"]' (18)
with solubility defined by:
S=[A"]+[HA]+2n[(AH-A)"" ] (19)

The [A7] and [(AH~A):_:| components in Eq. (19) may be expanded in terms of
[HA], pH and the various equilibrium constants [20]:

S — SO (1 + 10+(pH—pKa)) + zn_10+n(pH—pKa )+2n-log So +logK; (20)
Two limiting forms of Eq. (20) in log form may be posed as:

logS =1logS, @ pH << pK2™® (21a)
logS =log2n + log KX+ 2nlog S, — npK, + npH @ pH >> pK, (21b)

Derivations of other aggregation models are described elsewhere [8, 10, 16,
20, 31].
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3.5
“Flux” and other “Apparent” pK, in Permeability Measurement

The Caco-2 cell line is a popular model for characterizing drug permeability
[3, 22]. In this chapter, more emphasis is given to a more recently developed per-
meability model, introduced by Kansy et al. [78], i.e. PAMPA, which is now widely
used to assess passive permeability in screening programs [7, 8, 16, 21, 22, 31, 48,
76, 79-82]. For the purposes of this chapter, permeability profiles from both
models may be treated in a similar way. Traditionally, pH-dependent cellular per-
meability coefficients are designated “apparent”, expressed as log P,;,, and PAMPA-
based values are designated “effective,” log P.. The two terms have the same
meaning, with only minor operational differences in definitions (corrections for
filter permeability and mass balance deficiencies).

Permeability-pH profiles, log P. — pH curves in artificial membrane models
(log Py, — pH in cellular models), generally have sigmoidal shape, similar to that
of log D, — pH (c¢f. Fig. 3.1). However, one feature is unique to permeability
profiles: the upper horizontal part of the sigmoidal curves may be vertically
depressed, due to the drug transport resistance arising from the aqueous boundary
layer (ABL) adjacent to the two sides of the membrane barrier. Hence, the
true membrane contribution to transport may be obscured when water is the
rate-limiting resistance to transport. This is especially true if sparingly soluble
molecules are considered and if the solutions on either or both sides of the mem-
brane barrier are poorly stirred (often a problem with 96-well microtiter plate
formats).

Figure 3.4 shows the log P. — pH profiles of an acid (warfarin), a base (proprano-
lol) and an ampholyte (morphine). All data were collected by an automated robotic
system using 96-well microtiter plates (pION). The PAMPA membrane in Fig. 3.4
was formulated from phospholipids extracted from animal brain to model blood—
brain barrier (BBB) permeability [83]. In Fig. 3.4(a and b), vigorous magnetic
stirring produced ABL thicknesses matching those expected to be in the GIT
environment. In Fig. 3.4(c), the solutions were not stirred and indicated an ABL
thickness greater than 2000pM. In all cases, there is evidence of permeation by
both the neutral and the charged forms of the drugs. The observed permeability
was ABL-limited above pH 7 for propranolol (Fig. 3.4b) and morphine (Fig. 3.4¢).
The permeability of warfarin was largely membrane-limited across the pH range
studied.

3.5.1
Correcting Permeability for the ABL Effect by the pK{"“** Method

In the GIT epithelial environment, the ABL thickness is expected to be 30-100 pM,
whereas in unstirred permeability assays, the ABL thickness can be as high as
1000—-4000 pM [22, 48, 79]. By taking permeability (stirred or unstirred) data over
a range of pH, it is possible to match the effect of the ABL to that expected for the
GIT, by applying the pK{™* method [8, 22], briefly described below.
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Fig. 3.4 Permeability profiles for (a) warfarin
(acid), (b) propranolol (base) and (c)
morphine (ampholyte) based on a BBB
PAMPA model (pION) composed of animal
brain extract of lipids. The data (unpublished)
were analyzed with the pCEL-X program
(pION), with the refined parameters indicated
in the three frames. In all three cases, there
was evidence for the permeation of charged

3 4 5 6 7 8 9 10

forms of the drugs. Warfarin showed
predominantly membrane-limited transport,
whereas propranolol and morphine were
ABL-limited in transport for pH>7. Warfarin
and propranolol solutions were vigorously
stirred, to match the expected thickness of the
ABL (30-100pm). Morphine solutions were
not stirred.

In PAMPA, the effective permeability coefficient, P,, is related to the membrane
and ABL permeability coefficients, P, and P,p;, respectively, as

1 1 1
k. PABL P

(22)

(For cellular models, a more complicated form of the above equation is needed,
to factor in paracellular, facilitated uptake and efflux transport, etc. [22].)
For ionizable molecules, the membrane permeability, P,, (P, in cellular models),

depends on pH of the bulk aqueous solution. The maximum possible P,, is des-
ignated Py, the intrinsic permeability of the uncharged species. For monoprotic
weak acids and bases, the relationship between P,, and P, may be stated in terms
of the fraction of the uncharged species, fy, as P,=P, fy, i.e.:
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1 10°PH-P) 4
BT R )
m 0

« »

with “+” used for acids and used for bases. Other cases are described elsewhere
[8, 21]. The logarithmic form of the above equation is

log P,, = log P, — log (10*(°H-PXa) + 1) (24)

which describes a hyperbolic curve (cf: Fig. 3.4a and b, dashed curves). In the bend
of such curves (where the slope in the curve is one-half), the pH is indicative of
the pK, of the molecule.

Combining Egs. (22) and (23) leads to

11 10%PHPR) 4
- = +
l)e PABL PO

(25)

The logarithmic form of Eq. (25) is a hyperbolic curve, just like Eq. (24), with an
apparent pK, associated with the pH at half-slope positions (cf. Fig. 3.4, solid-line
curves).

For highly permeable molecules it is useful to consider the “flux” ionization
constant, pKE*"*, which refers to the pH value where the resistance to transport
across a permeation barrier is 50% due to the ABL and 50% due to the membrane
[21]. The approximate hyperbolic log-log equation (which is accurate when P, is at
least 10 times greater than Pag;)

FLUX

log P. = log P — log(10*PH-P5 7 1) (26)
describes the relationship between the effective permeability and the apparent
ionization constant [48]. The maximum possible effective (measured) permeabil-
ity, P, is defined as log P’ = log Py — log (1 + Papr/Py). When Py>> Pyg; (highly
permeable molecules), P™ = Py, indicating water-limited rather than mem-
brane-limited diffusion.

352
Membrane Rate-Limiting Transport (Hydrophilic Molecules)

If the ABL is vanishingly thin (exceedingly vigorous stirring) or if Py<<Pap
(common case with hydrophilic molecules), Eq. (26) reduces to Eq. (24), character-
ized by a horizontal region (indicating intrinsic permeability) and a diagonal region
(slope of +1). Warfarin (Fig. 3.4a) predominantly shows this membrane-limited
transport since P.< Pap; across the entire pH range. For the other two molecules,
propranolol and morphine, the transport is membrane-limited only for pH<7.
The dashed curves in Fig. 3.4 were calculated using Eq. (24), without consider-
ation of the resistance of the ABL, and represent the membrane part of the overall
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transport resistance. With bases (e.g. Fig. 3.4b), for pH>>pK,, Eq. (24) is that of
a (dashed) horizontal line, corresponding to the intrinsic permeability, Py, and for
pH<<pK,, Eq. (24) is that of a diagonal line, with a slope of +1, with membrane
permeability decreasing with decreasing pH, in accordance with the pH-partition
hypothesis. With acids (e.g. Fig. 3.4a), a mirror relationship holds: for pH<<pK,,
Eq. (24) is that of a horizontal line, and for pH>>pK,, Eq. (24) is that of a
diagonal line, with a slope of —1. It is possible to determine the P, and pK,
of a molecule from the log P, — pH data when the transport is primarily
membrane-limited.

353
Water Layer Rate-Limiting Transport (Lipophilic Molecules)

With a substantial ABL thickness (in the absence of stirring) and Py> P,y (typical
of lipophilic molecules), the transport of molecules is said to be ABL-limited. This
is generally the case with highly lipophilic drugs, where the same permeability is
often measured (30-80x10°cms™ in poorly stirred solutions), regardless of the
molecules, indicating a property of water (P*™) rather than membrane. The solid-
line curves for pH>7 in Fig. 3.4(b=propranolol and c=morphine) are examples
of this. With bases (e.g. Fig. 3.4b), for pH >> pKF'"%, Eq. (26) is that of a horizontal
line, and for pH << pKf™*, Eq. (26) is that of a diagonal line, with a slope of +1.
With acids (e.g. Fig. 3.4a), for pH << pKf™%, Eq. (26) is that of a horizontal line,
and for pH >> pK{'X, Eq. (26) is that of a diagonal line, with a slope of -1. As
long as the ABL contributes resistance to transport, and thus pK{'"* is defined
(i.e. Py=Papy):

log P, — log P, = +(pK. — pKF*™*) 20 (27)

If the true pK, of the molecule is known, then a simple inspection of the plot of
log P, (or P, in the case of cellular assays) versus pH can often reveal the values
of both log P, and log Pag;.

354
lonic-species Transport in PAMPA

In all three frames of Fig. 3.4, there is evidence of ionic-species transport, labeled
as log P; in Fig. 3.4. The pH at the bend in the curves corresponding to the onset
of ionic permeability is labeled pK! and corresponds to the pH where 50% of the
transport is by the neutral species and 50% by the ionic species. This is a condi-
tional constant, but unlike pK?" and pK¢'®, it is dependent mainly on the con-
stituent makeup of the artificial phospholipid mixture. As before:

log P, —log .=+ (pK. - pK,) (28)

It is useful to compare Eq. (28) to (9), (17) and (27).
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In the BBB-PAMPA lipid formulation illustrated in Fig. 3.4, the diff values,
defined as the difference log Py—log P;, range from 2.9 (morphine) to 4.2 (warfa-
rin), somewhat similar to the values observed in the octanol-water system.
However, it is premature to propose a “pdiff 3-4” approximation, given the limited
amount of data reported. With other lipid formulations, larger differences are
usually observed. In Double-Sink PAMPA, and especially in hexadecane-PAMPA,
transport of ionized drugs has not been reported [84].

3.6
Conclusions

This chapter considered ionizable drug-like molecules. Absorption properties that
are influenced by the pK, were explored. The impact of the pK,—absorption rela-
tionship on key physicochemical profiling underlying absorption (solubility, per-
meability and ionization) was examined in detail and several simplifying equations
were discussed. The various “diff” relationships considered in the chapter are
systematized in Table 3.2. Table 3.3 summarizes the “apparent pK, shift” method
for detecting aggregates in solubility profiles, when the apparent pK, value derived
from Henderson—-Hasselbalch analysis of log S—-pH profile does not agree with the

Tab. 3.2 Apparent pK,diff relations (monoprotic substances).

diff Equation Approximate Type Apparent pK,=aqueous
value' pH when. ..
log PY: —log Py = £ (pKP“" — pK, ) 342 ion-pair partition neutral and charged
(octanol-water) species equal in

concentration in
octanol phase

log Pem — log Phem = £ (p K™ - pK,) 1-22 ion-pair partition neutral and charged
(liposome-water) species equal in
concentration in lipid
bilayer
log S, — log S, = £(pKE™™ - pK,) 347 solubility (salt) neutral and salt solids
coprecipitated
log P, — log Pyg = +(pK, — pKI*¥) >0 permeability (ABL) 50% transport resistance

due to ABL and 50%
due to membrane

log P, —log P = +(pKi—-pK,) >3 permeability (ionic 50% transport due to
transport) neutral species and
50% due to charged
species

1 Approximate values in solutions containing 0.15 M ionic strength. Lower value refers to bases and higher
value to acids.
2 See Table 3.1.
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Tab. 3.3 Aggregation and apparent pK, (monoprotic substances)’.

Compound type A =pKi™ —pK, log So= Type of aggregate
Acid A>0 log S¢*F —|A| neutral
Acid A<O log S¢** anionic
Base A>0 log S§** cationic
Base A<0 log S6*" —|A| neutral

1

equation.

pK:* is the apparent pK,, determined from the application of the Henderson-Hasselbalch

true pK, value or when the slope in the diagonal portion of the log solubility—pH

profile is greater than unity.
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ANN artificial neural networks

AUROC area under the receiver operator characteristic
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CART classification and regression trees
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COX cyclooxygenase

CYP cytochrome P450
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DF decision forest
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PCR principal component regression

PFB percent fraction bound to serum proteins

P-gp P-glycoprotein

PLS partial least squares

PM-CSVM  positive majority consensus support vector machines
PNN probabilistic neural network

PP-CSVM  positive probability consensus support vector machines
QSAR quantitative structure—activity relationship

QSPkR quantitative structure—pharmacokinetic relationship
QSPR quantitative structure—property relationship

RFE recursive feature elimination

RP recursive partitioning

RR ridge regression

SA serotonin antagonists

SAR structure—activity relationship

SIMCA soft independent modeling of class analogy

SVM support vector machines

TdP torsade de pointes

TMARS two-step multivariate adaptive regression splines

4.1

Introduction

The electrotopological state (E-state) combines electronic information and molecu-
lar topology to describe the chemical structure at the atomic level. The E-state index
for an atom is the sum between the intrinsic state of that atom and a perturbation
term representing the influence of the remaining atoms in the molecule. The
intrinsic state of an atom encodes its electronic information corresponding to a
valence state and bonding state, thus providing a measure of the local topology.
The influence of the other atoms in the molecule is represented as a perturbation
that decreases as the square of the graph distance between atoms. The atomic
E-state index measures the electron accessibility as described by the molecular
topology alone. The E-state indices and related structural descriptors are used with
success in quantitative structure-property relationship (QSPR) and quantitative
structure—activity relationship (QSAR) models. The atomic-level structural infor-
mation encoded into the E-state indices generates a chemical space that can be
efficient in measuring the molecular similarity and in screening chemical
libraries.

The E-state is based solely on atom connectivity information obtained from the
molecular graph, without any input from the molecular geometry or sophisticated
quantum calculations. We start this chapter with a brief presentation of the
relevant notions of graph theory and continue with the definitions of a couple of
important graph matrices. Then the molecular connectivity indices are mentioned
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because the valence 8 index, which defines these indices, is also an important
component of the intrinsic state. Next, the family of atomic E-state indices is pre-
sented together with several methodologies for their application in QSPR and
QSAR. E-state indices may describe individual atoms in sets of molecules that
have a common skeleton or the E-state values may be summed for all atoms of a
certain type. Other types of E-state indices may be computed for hydrogen atoms,
for bonds, as well as for three-dimensional (3D) grid points that are used as
descriptors for 3D QSAR. In the last part of the chapter we review recent
applications of E-state indices in QSPR and QSAR, with a special emphasis for
application in drug design and in modeling biological properties of chemical
compounds.

4.2
E-state Indices

Organic molecules may be represented as molecular graphs in which graph verti-
ces correspond to atoms and graph edges represent covalent bonds between atoms
[1]. The graph model of the chemical structure describes the chemical bonding
pattern of atoms, without reference to the molecular geometry [2]. Structural
descriptors derived from the molecular graph, such as fingerprints, structural keys
and topological indices, are highly successful in modeling a broad range of physi-
cal, chemical or biological properties, thus demonstrating that these properties
depend mainly on the bonding relationships between atoms. The molecular graph
representation of the chemical structure encodes mainly the connectivity of the
atoms and is less suitable for the modeling of those properties that are determined
mostly by the molecular geometry, conformation or stereochemistry. Graph
descriptors have a clear advantage in screening large chemical libraries, or
in modeling various physical, chemical or biological properties of chemical
compounds.

4.2.1
Molecular Graph Representation of Chemical Structures

Graphs may be represented in algebraic form as matrices [3-5]. This numerical
description of the structure of chemical compounds is essential for the computer
manipulation of molecules and for the calculation of various topological indices
and graph descriptors [6]. The computation of the E-state indices is based on the
adjacency and distance matrices.

The adjacency matrix A(G) of a molecular graph G with N vertices is the square
NxN symmetric matrix in which [A];=1 if vertex v; is adjacent to vertex v; and
[A];=0 otherwise. The adjacency matrix is symmetric, with all elements on the
main diagonal equal to zero. The sum of entries over row i or column i in A(G)
is the degree of vertex v, §,. Usually, the adjacency matrix is based on weighted
molecular graphs in which heteroatoms are represented as vertex parameters and
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multiple bonds are represented as edge parameters [1, 5, 7, 8]. However, these
parameters are not considered in computing the o values for the E-state
indices.

In a simple (nonweighted) connected graph, the graph distance d; between a
pair of vertices v; and v; is equal to the length of the shortest path connecting the
two vertices, i.e. the number of edges on the shortest path. The distance between
two adjacent vertices is 1. The distance matrix D(G) of a simple graph G with N
vertices is the square Nx N symmetric matrix in which [D];=d; [9, 10].

The § connectivity index (atom degree), that has a central role in computing the
E-state, was used in the definition of the Zagreb topological indices [11]. Randi¢
modified the Zagreb index M, to obtain the connectivity index ¥ [12].

422
The Randi¢-Kier—Hall Molecular Connectivity Indices

Kier and Hall extended the definition of the § connectivity index in order to
incorporate heteroatoms and multiple bonds in the definition of the connectivity
index x [13-15]. They noticed that the & connectivity (atom degree) may be
expressed as:

8,':0,'—]11' (1)

where 6 is the number of G electrons and h is the count of hydrogen atoms bonded
to atom i. A simple modification of the § connectivity index can accommodate the
presence of heteroatoms and multiple bonds:

5}’=Z$’—hi=6,~+ni+lpi—hi (2)

where Z! is the number of valence electrons of atom i, w; is the number of elec-
trons in 1 orbitals and Ip; is the number of electrons in lone pair orbitals. Equation
(2), which is valid only for second row atoms, was extended to cover all atoms:

Zi=h,

Sy= =
Z—Z'-1

G)

where Z; is the count of all electrons of atom i. The valence & index encodes
the atomic electronic state, because it takes into account the number of valence
electrons, the number of core electrons and the number of bonded hydrogens.
Pogliani experimented with other similar functions for the & connectivity index
[16-18].

Kier and Hall used the valence § index from Eq. (3) to define the family of
molecular connectivity indices "y} [13-15]:

=Y 160 )

j=1i=1
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where s is the number of connected subgraphs of type t with m edges and n is the
number of vertices in the subgraph. These connectivity indices represent a weighted
sum over all molecular fragments with the same topology in a molecule.

423
The E-state Index

Kier and Hall noticed that the quantity (8'-8)/n’, where n is the principal quantum
number and &’ is computed with Eq. (2), correlates with the Mulliken—Jaffe elec-
tronegativities [19, 20]. This correlation suggested an application of the valence
delta index to the computation of the electronic state of an atom. The index
(8"—8)/n” defines the Kier—Hall electronegativity KHE and it is used also to define
the hydrogen E-state (HE-state) index.

The E-state indices are atomic descriptors composed of an intrinsic state value
I and a perturbation A that measures the interactions with all other atoms in a
molecule. The Kier—Hall electronegativity is the starting point in the definition of
the intrinsic state of an atom, which encodes its potential for electronic interac-
tions and its connectivity with adjacent atoms. The intrinsic state of an atom i is
(19, 21]:

@/n) (Z —h)+1 _(2/n)' 8! +1

Ii =
S o

®)

where n;is the principal quantum of atom i, and the valence 8 index &' is computed
with Eq. (2).

The second contribution to the E-state index comes from the interactions
between an atom i and all other atoms in the molecular graph. The perturbation
on the intrinsic state value I of atom i due to another atom j depends on the dif-
ference between the corresponding intrinsic state values, (I;—I), and on the graph
distance between atoms i and j. The overall perturbation on the intrinsic state value
I of atom 1 is:

NlNIl I_]
e ) g

Ll_]H-l i=1 j=i+1 i

where d;; is the topological distance between atoms i and j, equal to the minimum
topological length of the paths connecting the two atoms, i.e. the minimum
number of bonds between atoms i and j, and r; is the number of atoms on the
shortest path between atoms i and j, i.e. ry=d;+ 1. Due to the r” term, the perturba-
tion term decreases very fast when the topologlcal distance between atoms
increases, thus limiting the effect of distant atoms.

Finally, the E-state index S; of atom i is the sum of the intrinsic state and of the
perturbation term:

Si=Ii+AIi (7)

89
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4.2.4
Hydrogen Intrinsic State

The Kier—Hall electronegativity is used to define the HE-state index HS [19]:

®)

& < KHE,-KHE
HS,=KHE,-KHEH)-Y, Y ————
i=1 j=i+1 T

y

where KHE(H)=-0.20. Kellogg et al. proposed an alternative definition for the
HE-state indices, in which the intrinsic state of a hydrogen atom depends on the
d indices of the attached atom [22]:

8 -8,
e 5 )

where the hydrogen atom is attached to atom i. The HE-state descriptor is:
HS,':I(H)i'f'AIi (10)

Thus, in each molecule, there are two sets of E-state values: one for all non-
hydrogen atoms and the second for the hydrogen atoms. The HS values are zero
for atoms without hydrogens.

4.2.5
Bond E-state Indices

Another extension of the E-state descriptors describes the bond parameters derived
from intrinsic states. Bond E-state indices are based on intrinsic values that are
the geometric mean of the atom intrinsic value [20]:

BI;=(LL)" (11)

The bond E-state indices add a perturbation of the BI value under the influence
of all other bonds in the molecule:

BI, - BI
ps-piye y, 2

erl €E(G) ry,kl

(12)

where the graph distance between two bonds is:

Ta+1+rg+71;
”ij,kzz—( d l4 £ ﬂ) (13)
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4.2.6
E-state 3D Field

The E-state and HE-state indices were used by Kellogg et al. to compute field values
on a 3D grid superimposed over the molecules [22]. At each grid point w the
E-state interaction energy is:

Ey= 2.5 (r) (14

where the summation goes over all atoms i in a molecule, S; is the E-state or HE-
state index for atom i, and f(r,) is a distance function between an atom i and the
grid point w. Several distance functions f were tested, such as ', 2, >, r* and

~r

e .

4.2.7
Atom-type E-state Indices
R
1
6 = | 2
SNy -3
4
1

The E-state indices are computed for each atom in a molecule and these topological
indices are best suited for applications to datasets in which all molecules have a
common skeleton. For example, in the case of a series of chemical compounds
based on the general structure 1, the QSAR descriptors may be the E-state indices
S1, S2, S3, S4, Ss and Se. Similar descriptors may be computed from HS-state values.
However, this approach limits the application of the E-state indices only to series
of compounds that have a common skeleton.

A different approach for obtaining E-state descriptors is the classification of the
atoms in atom types, followed by the summation of the E-state values for all atoms
of a certain type in a molecule. The definition of atom-type E-state groups is based
on several rules, i.e. chemical type of the atom, valence state, aromaticity, number
of bonded hydrogen atoms and, only in a few cases, the nature of other adjacent
atoms. For example, —CHj; groups are denoted with sCH3 and —CH groups in
benzene are denoted with aaCH. The sum of atom-type E-state values for —CH,
is denoted with SsCH3, and the sum of atom-type E-state values for an aromatic
—CH group is denoted SaaCH.

4.2.8
Other E-state Indices

Important series of E-state and HE-state descriptors are derived from the atomic
E-state values, such as maximum group type E-state, minimum group type E-state,
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maximum group type HE-state, minimum group type HE-state, maximum E-state,
minimum E-state, maximum HE-state, minimum HE-state, etc. A list with the
definitions of these and many other E-state indices may be found in the Molconn-Z
manual (http://www.edusoft-lc.com/molconn). The E-state and the HE-state
indices may be used as atomic parameters to generate other topological indices.
For example, the intrinsic state and the E-state indices were inserted on the diago-
nal of the Burden matrix, thus generating an entire family of new descriptors
23].

Voelkel used the formula of the | index [24] to define the E-state topological
parameter TIg [25]:

M
T(G) === D (Six Sy (15)
E(G)

where M is the number of edges in G, p is the cyclomatic number of G (the
number of cycles in G) and the summation goes over all edges from the edge set
E(G). Several QSAR applications of this E-state index will be presented in the next
section.

Lin et al. combined atomic electronegativity with molecular graph distances to
obtain a new electrotopological descriptor, the molecular electronegativity topo-
logical distance vector (METDV) [26]. The nonhydrogen atoms in a molecule are
characterized by their relative Pauling electronegativity, i.e. the Pauling electro-
negativity divided by that of carbon. The METDV descriptors are defined as:

' RERE,
METDV, = ) —

i<j

(16)

where k=1, 2, 3, ..., up to the maximum length of the METDV vector, RE,; is the
relative Pauling electronegativity for atom i, and d; is the topological distance
between atoms i and atom j. The METDV descriptors were successful in modeling
the pICs, for peptide inhibitors of the angiotensin converting enzyme [26].

4.3
Application of E-State Indices in Medicinal Chemistry

In this section we review several recent applications of the E-state indices. Software
programs that may be used to compute these topological indices include Molconn-
Z (see above), Cerius® (http://www.accelrys.com), Dragon (http://www.talete.
mi.it) and E-Dragon (http://www.vcclab.org/lab/edragon). Apart from the E-state
indices, all these programs compute a large variety of other structural descriptors,
which enables an unbiased comparison between different descriptors. E-state
indices are selected with a high frequency in the best QSAR models, thus dem-
onstrating their important role in developing predictive models.
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4.3.1
Prediction of Aqueous Solubility

Aqueous solubility is selected to demonstrate the E-state application in QSPR
studies. Huuskonen et al. modeled the aqueous solubility of 734 diverse organic
compounds with multiple linear regression (MLR) and artificial neural network
(ANN) approaches [27]. The set of structural descriptors comprised 31 E-state
atomic indices, and three indicator variables for pyridine, aliphatic hydrocarbons
and aromatic hydrocarbons, respectively. The dataset of 734 chemicals was divided
into a training set (n=675), a validation set (n=38) and a test set (n=21). A com-
parison of the MLR results (training, r*=0.94, s=0.58; validation r*=0.84, s=0.67;
test, r*=0.80, s=0.87) and the ANN results (training, r*=0.96, s=0.51; validation
r*=0.85, s=0.62; test, r*=0.84, s=0.75) indicates a small improvement for the
neural network model with five hidden neurons. These QSPR models may be used
for a fast and reliable computation of the aqueous solubility for diverse organic
compounds.

4.3.2
QSAR Models

CH;

N Q /CH3

O
Y
X
2

Due to its role in cocaine addiction, the dopamine transporter is investigated as a
target for cocaine abuse. Maw and Hall modeled the ICs, binding affinity for the
dopamine transporter of a set of 25 phenyl tropane analogs 2 with QSAR models
based on E-state indices [28]. The best QSAR, with r*=0.84 and ¢*=0.77, has four
E-state indices, i.e. the sum of HE-state indices for all nonpolar hydrogen atoms,
the sum of HE-state indices for all groups that act as H-bond donors (—CONH,
—OCONH, —NH, and —OH in this dataset), the HE-state index for the substituent
X and the atom type E-state index for —CHj; groups.

The HIV-1 protease is responsible for processing the protein precursors to the
enzymes (integrase, protease and reverse transcriptase) and the structural proteins
of the HIV-1 virus. Maw and Hall found that topological indices provide reliable
QSAR models for the ICs, data of 32 HIV-1 protease inhibitors [29]. The best QSAR
model, with r*=0.86, s=0.60 and ¢°=0.79, was obtained with the shape index *k,
the connectivity index %", the sum of HE-state indices for all groups that act as
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H-bond donors and the sum of HE-state indices for all nonpolar hydrogen atoms
in a molecule. These four topological indices highlight the structural features that
determine the potency of these inhibitors, i.e. the molecular globularity, the skel-
etal branching, the H-bond-donating ability and the presence of nonpolar groups.
The QSAR model was validated through the prediction of 15 compounds from an
external test set, yielding a mean absolute error MAE of 0.82. The QSAR model
has a direct structural interpretation that facilitates the design of better HIV-1
protease inhibitors.

R, O "
R; N
H N
"
Ry |
3

Derivatives of (S) N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxy benzamide 3 are
dopamine D, receptor antagonists. Samanta et al. obtained the following MLR
QSAR for 49 derivatives with the general structure 3 [30]:

pICso="7.180(+0.188) + 0.761(+0.144)w_R, — 1.657(£0.351) R_Rs
+0.550(+0.155)R;_Et — 0.947(+0.316)I_NO,

+0.773(+0.320)R,_I - 0.111(+0.050)SaaCH (17)

n=49,r*=0.801, s = 0.406, g’oo = 0.727, F = 28.3

where m_R; is the hydrophobicity of the substituent R;, R_R; is the resonance effect
of the substituent Rs, R;_Et is an indicator variable for ethyl group in the position
R;, I_NO, is an indicator variable for nitro group, R;_I is an indicator variable for
[ in the position R; and SaaCH is the E-state index corresponding to the aromatic
—CH group. This classical QSAR model may suggest chemical transformations
that improve the ICs, of dopamine receptor antagonists.
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The neuropeptide Y (NPY) belongs to a family of peptides that includes peptide
YY and pancreatic polypeptide, and it is associated with several diseases such as
asthma, immune system disorders, inflammatory diseases, anxiety, depression
and diabetes mellitus. NPY is found in the central and peripheral nervous system,
and its biological functions are mediated by interactions with five receptor sub-
types, i.e. Y1, Y2, Y4, Y5 and Y6. Several studies indicate that the feeding behavior
is influenced by interactions between NPY and Y1 and Y5. Deswal and Roy used
Cerius® descriptors and genetic function approximation QSAR to investigate the
structural determinants for the inhibition potency of 24 compounds with the
general structure 4 for the NPY Y5 receptor [31]. The best QSAR (r=0.720,
gioo=0.616, F=12.2) was obtained with four indices, i.e. the E-state index for a
>N— group SsssN, the molecular connectivity index y’, the area of the molecule
projected on the XZ plane ShadowXZ, and the AlogP atom type count AtypeC8.
The pIC;, values predicted for a test set of six compounds have a good correlation
with the experimental values, r*=0.706, indicating that the QSAR model is stable
and reliable.

The steady increase in the frequency of tuberculosis infections resistant to con-
ventional drug therapy highlights the need for new drugs that are efficient against
Mycobacterium tuberculosis infections. Experimental studies showed that some
quinolone derivatives are efficient antibacterials for M. tuberculosis as well as other
mycobacterial infections, such as those with M. fortuitum and M. smegmatis. Bagchi
et al. used a dataset of 68 quinolone derivatives 5 to model their MIC against M.
fortuitum and M. smegmatis with ridge regression (RR), principal component
regression (PCR) and partial least squares (PLS) [32]. The QSAR models were
developed from a pool of 247 topological indices computed with Polly and Molconn-
Z, and included the entire spectrum of E-state indices. The best LOO predictions
for M. fortuitum MIC were obtained with ridge regression, i.e. r’=0.900 and
9°=0.796 for RR, ¢*=0.566 for PCR, and ¢*=0.792 for PLS, whereas the best pre-
dictions for M. smegmatis MIC were obtained with partial least squares, i.e.
r*=0.967 and ¢’=0.849 for RR, ¢°=0.595 for PCR, and ¢°=0.854 for PLS. The E-
state descriptors used in combination with other topological indices are effective
in modeling the MIC of quinolone derivatives against M. fortuitum and M.
smegmatis.
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R;

The structural features that determine the selectivity for cyclooxygenase (COX)COX-
2 versus COX-1 binding affinity to 1-(substituted phenyl)-2-(4-aminosulfonyl/
methylsulfonyl)-substituted benzenes 6 was investigated by Chakraborty et al. with
QSAR models based on E-state indices and indicator variables [33]. The electroto-
pological indices represented atomic E-state values for atoms from the common
skeleton and sums of E-state indices for groups of atoms. Significant QSAR
models were obtained for all three properties investigated, i.e. ¥=0.815 and
Gioo=0.675 for pICsy(COX-1), r*=0.887 and gioo=10.842 for pICs(COX-2), and
*=0.746 and gfoo = 0.601 for [pICso(COX-2) — pICsy(COX-1)].

433
Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET)

Depending on its designated target, a drug may be required to have a minimum
or a maximum penetration of the blood-brain barrier (BBB). Rose et al. found that
a QSAR equation with three topological indices is a reliable model for the blood—
brain partitioning of 102 drugs and drug-like compounds [34]. The QSAR model,
with 7=0.66, s=0.45 and ¢*=0.62, was obtained with the sum of HE-state values
for all groups that act as H-bond donors, the sum of HE-state values for all aro-
matic hydrogens in a molecule and the molecular connectivity difference d”y" that
measures the molecular branching. The model may offer a structural interpreta-
tion of the blood-brain partitioning of a chemical, i.e. molecules that penetrate
the BBB have large aromatic groups, few or week H-bond donors, and small
branching.

Deconinck et al. investigated the application of Classification And Regression
Trees (CART) with boosting for the classification of compounds according to their
BBB passage properties [35]. The structural descriptors of 147 chemical com-
pounds were computed with Dragon, and then CART and boosting CART were
used to identify the best descriptors. The dataset was divided into a training set of
132 molecules and a test set of 15 molecules, and then a classification model is
generated by using 150 classification trees in a boosting approach. The average
prediction is computed over 20 such boosting CART models. A significant improve-
ment is obtained for the boosting CART classifiers, that have a percentage
of correctly classified molecules of 94.0% compared to 80.6% for a single tree
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classifier. Although the sum of E-state values is the single electrotopological index
selected in the boosting CART models, two other indices are derived from E-state
values, i.e. a WHIM index and a total accessibility index weighted by E-state
indices.

Membrane transporters, such as P-glycoprotein (P-gp), play an important role
in the metabolism and the in vivo disposition of drugs. P-gp, which is a member
of the ATP-binding cassette superfamily, is a transmembrane efflux pump that
can transport various drugs, thus changing their pharmacokinetic properties and
leading to multidrug resistance. The structural features that characterize P-gp
ligands have been investigated in several computational studies and it was found
that E-state indices are important components of SAR models that predict if a
chemical is a P-gp ligand.

Gombar et al. used results from in vitro monolayer efflux assays to calibrate a
linear discriminant analysis (LDA) model that can identify P-gp ligands [36]. The
dataset of 95 drugs and drug-like compounds was comprised of 63 P-gp ligands
and 32 nonligands. The pool of structural descriptors was mainly composed of E-
state and fragment counts indices, supplemented with several constitutional and
topological descriptors, such as the number of hydrogen donors and acceptors.
The final LDA model contains 27 descriptors, i.e. 13 E-state indices, 12 fragment
counts, molar refraction and log P. In calibration, only one nonligand is classified
as ligand, whereas in the leave-one-out cross-validation test three nonligands are
predicted to be ligands. The 63 ligands are correctly computed both in calibration
and prediction. A more rigorous test of the predictive power of the LDA model
was performed with a dataset of 58 compounds that were not used to develop the
classifier. The LDA classifier was able to predict correctly 33 of the 35 ligands and
17 of the 23 nonligands, with an overall accuracy of 86.2%. In addition to the LDA
classifier, the study found that a very simple rule, based on the molecular sum of
all atomic E-state values, MolES, may discriminate P-gp ligands and nonligands.
Thus, among the 95 compounds, those with MolES >100 are mainly P-gp ligands
(18/19=95%), whereas the molecules with MolES <49 are usually P-gp nonligands
(11/13=84.6%). The rule was also verified for the test of 58 compounds, with a
perfect prediction. The LDA model, based mainly on 13 E-state indices and frag-
ment counts, is a fast filter that may be efficient in screening large chemical
libraries.

Among the ADMET properties, human intestinal absorption (HIA) is an impor-
tant parameter for all drug candidates. Deconinck et al. experimented with CART
models for the %HIA of 141 drug-like compounds [37]. The CART algorithm was
used to classify chemical compounds in one of the five absorption classes 0-25,
26-50, 51-70, 71-90 and 91-100%. The Dragon package was employed to compute
more than 1400 molecular descriptors, comprising constitutional descriptors, E-
state indices, topological indices and geometrical descriptors. Among the struc-
tural descriptors selected by the variable ranking method, one finds several E-state
indices, i.e. molecular E-state variation, mean E-state value, sum of E-state values,
and maximal E-state negative variation, as well as several WHIM indices weighted
by atomic E-state values.
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The %HIA, on a scale between 0 and 100%, for the same dataset was modeled
by Deconinck et al. with multivariate adaptive regression splines (MARS) and a
derived method two-step MARS (TMARS) [38]. Among other Dragon descriptors,
the TMARS model included the TI; E-state topological parameter [25], and MARS
included the maximal E-state negative variation. The average prediction error,
which is 15.4% for MARS and 20.03% for TMARS, shows that the MARS model
is more robust in modeling %HIA.

Norinder and Osterberg used electrotopological indices to obtain PLS models
for several drug transport parameters, i.e. Caco-2 cell permeability, HIA, BBB
partitioning and immobilized artificial membrane (IAM) chromatography [39].
The PLS models were obtained with the hydrophobicity parameter ClogP, the cal-
culated molar refraction and four E-state indices, i.e. the sum of HE-state values
for hydrogens bonded to oxygen, nitrogen and sulfur, the sum of HE-state values
for hydrogens bonded to other atoms, the sum of E-state values for nitrogen atoms,
and the sum of E-state values for oxygen atoms. All QSAR models obtained with
E-state indices have a good predictive power, as indicated by the statistical indices:
*=0.931 and gfoo = 0.888 for HIA, *=0.871 and g?,, = 0.815 for Caco-2, *=0.796
and gfoo=0.774 for BBB, and r*=0.857 and gy, = 0.844 for IAM. QSAR models
based on the E-state indices represent a fast screening tool for various drug trans-
port parameters. Furthermore, the E-state indices are computed only from the
molecular graph, without the need to determine the 3D structure of the chemical
compounds.

Xue et al. investigated the application of recursive feature elimination for the
following three classification tests: P-gp substrates (116 substrates and 85 nonsub-
strates), human intestinal absorption (131 absorbable compounds and 65 nonab-
sorbable compounds) and compounds that cause torsade de pointes (TdP; 85
TdP-inducing compounds and 276 non-TdP-inducing compounds) [40]. With the
exception of TdP compounds, the recursive feature elimination (RFE) increases
significantly the prediction power of support vector machines (SVM) classifiers
[41] with a Gaussian radial basis function kernel. The accuracy (AC) and Matthews
correlation coefficient (MCC) for SVM alone and for SVM plus recursive feature
elimination (SVM +RFE) using a L20%O cross-validation test demonstrates the
importance of eliminating ineffective descriptors: P-glycoprotein substrates, SVM
AC=68.3% and MCC=0.37, SVM+RFE AC=79.4% and MCC=0.59; human
intestinal absorption, SVM AC=77.0% and MCC=0.48, SVM +RFE AC=86.7%
and MCC=0.70; and TdP-inducing compounds, SVM AC=82.0% and MCC=0.48,
SVM +RFE AC=83.9% and MCC=0.56.

Plasma protein binding influences oral bioavailability and pharmacodynamic
behavior of drugs. The formation of the drug/plasma protein complex decreases
the initial free concentration of the drug, whereas the decomposition of this
complex may lead to prolonged presence of the drug in the body. Hall et al. inves-
tigated the structural features that determine the binding affinity to human serum
albumin (HSA) by modeling the high-performance liquid chromatographic reten-
tion index of 94 drugs [42]. The stationary phase was immobilized HSA. The
optimum QSPR model, with #=0.77, s=0.29 and ¢*=0.70, was obtained with six
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topological indices, i.e. the connectivity index corresponding to five-membered
rings *x"cy, the connectivity index corresponding to six-membered rings ®y’cy, the
sum of E-state values for the —OH group, the sum of E-state values for aromatic
carbon atoms, the sum of E-state values for the aliphatic groups —CH;, —CH,— and
>CH—, and the sum of E-state values for halogens. The QSAR model indicates
that the binding to HSA is strongly influenced by the structural features encoded
by these six descriptors.

In a related study, Hall et al. found that E-state and molecular connectivity
indices correlate with the binding of B-lactams (penicillins and cephalosporins) to
human serum proteins [43]. The percent fraction bound to serum proteins (PFB)
for 74 penicillins was modeled with good statistics, i.e. ¥=0.80, s=12.1 and
g°=0.76. In a subsequent test for 13 penicillins, this QSAR gave good predictions
for PFB, with g°=0.84 and a mean absolute error MAE=12.7. The set of 74 penicil-
lins was then combined with a set of 28 cephalosporins and the dataset of 115 -
lactams gave a good QSAR, with *=0.82, s=12.7 and ¢°=0.78. These two QSAR
models may suggest structural factors that modulate the B-lactams binding to
human serum proteins, such as aromatic rings, halogens, methylene groups and
>N— atoms.

The total clearance CL, of a chemical compound is a pharmacokinetic parame-
ter that quantifies the relationship between its rate of transfer and its concentration
in blood. The CL, of a drug characterizes its bioavailability and elimination, and
thus may be used to determine its dose and steady-state concentration. Yap et al.
obtained CL,,; quantitative structure—pharmacokinetic relationships (QSPkR) com-
puted with four machine learning procedures, i.e. general regression neural net-
works, support vector regression, k-nearest neighbors (kNN) and PLS [44]. The
dataset of 503 compounds was separated into a calibration set (n=398) and a vali-
dation set (n=105). The chemical structure was characterized with topological
indices, E-state indices and geometrical descriptors. Based on the statistics obtained
for the validation set, the best predictions are obtained with the support vector
regression followed by the general regression neural network. Although a large
number of geometrical descriptors were tested in the QSPkR models, the results
indicate that the most important descriptors are E-state indices and other consti-
tutional and topological descriptors. The only two relevant geometrical descriptors
are the 3D Wiener index and the 3D gravitational index. The support vector regres-
sion QSPkR model is a fast and reliable computational procedure to identify
compounds with poor bioavailability during drug development.

TOPKAT is a system of SAR and QSAR models for the computer-assisted pre-
diction of various toxicity data, such as Ames mutagenicity, rodent carcinogenicity,
rat oral LDy, skin sensitization, aerobic biodegradability, eye irritancy, rabbit skin
irritancy and rat inhalation toxicity [45]. The skin sensitization QSAR models from
TOPKAT are based on experimental data for 335 chemicals, and use E-state
indices, shape and symmetry descriptors, and molecular transport indices as
structural descriptors. Fedorowicz et al. used logistic regression, TOPKAT and the
expert system DEREK to model the skin sensitization potential of chemical com-
pounds [46]. The structural descriptors for the logistic regression were computed
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with Dragon, Cerius® and Molconn-Z. The guinea pig skin sensitization dataset of
105 molecules contains 82 sensitizers and 23 nonsensitizers. The correct classifica-
tion values for the guinea pig dataset are 73.3% for TOPKAT, 82.9% for DEREK
and 87.6% for the logistic regression. The logistic regression classifier for the
guinea pig dataset is based on the maximum HE-state index and three autocorrela-
tion descriptors.

Another model system used to determine the skin sensitization potential of
chemicals is the murine local lymph node assay (LLNA). Fedorowicz et al. used
only DEREK and logistic regression for the LLNA dataset because this SAR model
is not implemented in TOPKAT [46]. The LLNA dataset of 178 molecules contains
132 sensitizers and 46 nonsensitizers. The correct classification values for the
LLNA dataset are 73.0% for DEREK and 83.2% for the logistic regression. The
logistic regression classifier for the LLNA dataset is based on the minimum E-state
index and four other structural descriptors. The results obtained indicate that
logistic regression is a better classifier for the prediction of skin sensitization
potential.

Yap and Chen developed a jury SVM method for the classification of inhibitors
and substrates of cytochrome P450 (CYP) 3A4 (241 inhibitors and 368 substrates),
2D6 (180 inhibitors and 198 substrates) and 2C9 (167 inhibitors and 144 sub-
strates) [47]. Structural descriptors computed with Dragon were selected with a
genetic algorithm procedure and a L10%O or L20%0O SVM cross-validation. Two
jury SVM algorithms were applied. The first is the positive majority consensus
SVM (PM-CSVM) and the second is the positive probability consensus SVM (PP-
CSVM). PM-CSVM classifies a compound based on the vote of the majority of its
SVM models, whereas PP-CSVM explicitly computes the probability for a com-
pound being in a certain class. Several tests performed by Yap and Chen showed
that at least 81 SVM models are necessary in each ensemble. Both PM-CSVM and
PP-CSVM were shown to be superior to a single SVM model (MCC for CYP2D6,
MCC=0.742 for single SVM, MCC=0.802 for PM-CSVM and MCC=0.821 for
PP-CSVM). As PP-CSVM appears to outperform PM-CSVM, the final classifica-
tion results were generated with PP-CSVM: MCC=0.899 for CYP3A4, MCC=0.884
for CYP2D6 and MCC=0.872 for CYP2C9.

434
Mutagenicity and Carcinogenicity

The carcinogenicity and mutagenicity assessment is an important step in deter-
mining if novel chemical compounds meet the safety standards for industrial or
household use. Early phases of drug development evaluate the genotoxic potential
of the chemicals involved in the drug design process with a combination of com-
putational and experimental procedures. The Ames mutagenicity test, using
Salmonella typhimurium strain TA 100 in the presence of S9 liver homogenate, is
a reliable procedure in determining the genotoxic potential of chemicals. Many
computational tools for the genotoxicity prediction are based on the experimental
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results of the Ames mutagenicity test. Classification and regression SAR and
QSAR models are valuable tools to prioritize, and reduce the number of com-
pounds that are experimentally tested for their genotoxicity potential. In this
section we review several QSAR models for genotoxicity prediction that use E-state
indices among other structural descriptors.

Votano et al. developed classification models for the mutagenicity of 3363 diverse
compounds tested for their Ames genotoxicity [48]. Three classification models
were compared, i.e. ANN, kNN and decision forest (DF). All SAR models were
developed using the same initial set of 148 topological indices that included E-state
indices and molecular connectivity indices. The dataset was split into 2963 training
compounds and 400 prediction compounds. All three classifiers gave good predic-
tions, with a slight advantage for the neural network, as indicated by the area under
the receiver operator characteristic (AUROC) curve, i.e. AUROC=0.93 for ANN,
AUROC=0.92 for kNN and AUROC=0.91 for DF. Among the 15 most important
structural descriptors selected in these three classifiers, one finds 13 E-state
indices. The topological indices from the AN, kNN and DF models are related to
toxicophores linked to genotoxic responses in S. typhimurium.

Quinolone derivatives with antibiotic activity block the bacterial replication by
interacting with the bacterial DNA gyrase, thus inhibiting the coiling of bacterial
DNA. Quinolines with antiinflamatory effects are used to treat autoimmune dis-
eases, such as rheumatoid arthritis. Laboratory studies have shown that both qui-
nolone and quinoline derivatives are liver carcinogens in rodents and exhibit
mutagenicity in the Ames test. The ADAPT system [49] was used by He et al. to
develop probabilistic neural network (PNN) classification models for the genotoxic
potential of quinolone and quinoline derivatives [50]. The experimental genotoxic-
ity of 85 quinolone derivatives and of 115 quinoline derivatives was determined
with the SOS Chromotest — a faster alternative to the Ames test. The SOS Chro-
motest measures the induction of a lacZ reporter gene in response to DNA
damage. The quinolone dataset contains 23 genotoxic and 62 nongenotoxic com-
pounds, whereas the quinoline dataset contains 44 genotoxic and 71 nongenotoxic
chemicals. An ensemble of nine PNN models was developed for each classification
model and the final class attribution (genotoxic/nongenotoxic) was decided by a
majority vote of the trained classifiers. Simulated annealing was used to select
between three and 10 structural descriptors for each PNN classifier. The ensemble
PNN model for quinolone derivatives was able to predict correctly 16 of the 23
genotoxic chemicals and 60 of the 62 nongenotoxic compounds, with an overall
accuracy of 89.4%, an overall accuracy for genotoxic class of 69.6% and an overall
accuracy for nongenotoxic class of 96.8%. Among the structural descriptors
selected in the quinolone PNN model, one finds the minimum atomic E-state
value and the through-space distance between minimum and maximum atomic
E-state values. The committee PNN model for quinoline derivatives was able to
predict correctly 39 of the 44 genotoxic compounds and 67 of the 71 nongenotoxic
chemicals, with an overall accuracy of 92.2%, an overall accuracy for genotoxic
class of 88.6% and an overall accuracy for nongenotoxic class of 94.4%. The
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descriptors used in the quinoline PNN model include the average E-state values
over all heteroatoms and the sum of E-state values over all heteroatoms. These
results show that the structural information carried by the descriptors selected in
the ensemble PNN models offer reliable predictions for the genotoxic potential of
quinolone and quinoline derivatives.

The TOPKAT system for predicting chemical carcinogens has four rodent
models, i.e. male rat, female rat, male mouse and female mouse. These four clas-
sifiers are based on structural descriptors computed from atomic and bond E-state
indices. Prival tested the TOPKAT system by determining its ability to predict the
chronic rodent carcinogenicity of 28 chemical compounds tested by the National
Toxicology Program [51]. Although the sample used in this test is small, the clas-
sification results suggest that the predictions of the TOPKAT carcinogenicity
modules do not agree with the experimental findings of the National Toxicology
Program. From the 16 carcinogenic compounds, TOPKAT predicted seven as
noncarcinogenic, whereas from the 12 noncarcinogenic compounds, TOPKAT
predicted four as carcinogenic.

Snyder et al. collected from the 2000-2002 Physicians’ Desk Reference data
regarding the Ames mutagenicity test and other genotoxicity tests for 394 drugs
and compared them with predictions of three computational systems for geno-
toxicity evaluation, i.e. MCASE, TOPKAT and DEREK [52]. All three systems have
a low sensitivity in predicting the Ames mutagenicity, suggesting that they are not
suitable for drug safety evaluations. However, these computational systems incor-
porate SARs for genotoxicity that may be useful in screening large chemical librar-
ies and in prioritizing the chemicals for mutagenicity tests in the early phases of
drug discovery.

4.35
Anticancer Compounds

Cisplatin, carboplatin and oxaliplatin are effective treatment options for testicular
and ovarian cancers, but their use is hindered by their poor selectivity between
malignant and normal cells, as well as by the induction of chemoresistance. Monti
et al. investigated the cytotoxicity of 16 cis-platinum(II) compounds for the A2780
human ovarian adenocarcinoma cell line and on its cisplatin-resistant subline
(A2780Cp8) [53]. The chemical structures computed with the PM3 method imple-
mented in SPARTAN were used as input for the Dragon package that provided a
total of 626 structural descriptors, which was filtered to a pool of 197 descriptors
retained for the QSAR modeling. The best QSAR model for the pIC;, of cisplatin
resistant cells A2780Cp8 (r*=0.973, gloo = 0.947, gisos0 = 0.856, s=0.144, F=97.9)
has four descriptors, i.e. the E-state topological parameter I; [25], the centric infor-
mation index Iy, the Geary index c¢(4)p and the BCUT descriptor BELe7. The pre-
dictive power of the model was evaluated with the leave-one-out and leave-50%-out
cross-validation procedures, respectively. This QSAR model has a good predictive
power and may be used to design cis-platinum(II) derivatives that are effective
against cisplatin-resistant cells.
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4.3.6
Virtual Screening of Chemical Libraries

QSAR models are very useful tools for the identification of structural features that
determine various molecular properties and may even suggest the mechanism of
action for biochemical processes. Thus, QSAR models start from structure and
correlate descriptors with molecular properties. Once a QSAR model is estab-
lished, an inverse process becomes possible, i.e. setting a target value for a molecu-
lar property and then finding all possible chemical structures that might exhibit
that property value, within a certain range of variation. This process in called
inverse QSAR and it represents an important step in optimizing the drug-like
properties of chemical compounds. Lewis proposed an inverse QSAR strategy that
may assist medicinal chemists in deciding how to optimize a library of chemical
compounds [54]. The starting point is a dataset of chemical compounds with a
molecular property and a corresponding QSAR model. The inverse QSAR strategy
involves an iterative application of several steps, i.e. generation of new structures,
structure filtering based on synthetic feasibility or undesired properties and QSAR
filtering. The first step generates a new chemical library by applying simple chemi-
cal transformations to the molecules from the initial dataset. Examples of such
transformations are modification of the bond order, adding or removing an atom,
adding or removing a fragment, or changing C to N or O. The second step filters
molecules that have nonspecific reactivity, such as electrophiles, nucleophiles,
acylating agents or redox systems. Synthetic feasibility rules are used to eliminate
compounds that are difficult to synthesize or those that are expensive. Finally,
QSAR models are used to select candidates for chemical synthesis. The inverse
QSAR strategy developed by Lewis was tested for a combinatorial library of 150
inhibitors of human carbonic anhydrase II, that was used to develop a MLR genetic
function approximation QSAR, as implemented in Cerius® The best QSAR model
(r*=0.81, gloo = 0.80, F=127) is based on five structural descriptors, i.e. the molec-
ular flexibility index ¢, the charge of the most positive atom divided by the total
positive charge Jurs-RPCG, the E-state index for sp’ N atom SdsN, the electroto-
pological count for aromatic S atoms NaaS and the molecular volume inside
the contact surface V,,. This QSAR was used as the starting point for performing
automated property optimization.

The E-state indices may define chemical spaces that are relevant in similarity/
diversity search in chemical databases. This similarity search is based on atom-type
E-state indices computed for the query molecule [55]. Each E-state index is con-
verted to a z score, z;=(x;—;)/0;, wWhere x; is the ith E-state atomic index, p; is its
mean and ©; is its standard deviation in the entire database. The similarity was
computed with the Euclidean distance and with the cosine index and the database
used was the Pomona MedChem database, which contains 21000 chemicals. Tests
performed for the antiinflamatory drug prednisone and the antimalarial drug
mefloquine as query molecules demonstrated that the chemicals space defined by
E-state indices is efficient in identifying similar compounds from drug and drug-
like databases.
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Lazy learning methods represent a class of machine learning algorithms that
store the entire training dataset and process it only when it is requested to process
a query datapoint. Kumar et al. coupled into a QSAR algorithm the nonlinear
reduction of dimensionality with robust regressors. Locally linear embedding was
used to reduce the nonlinear dimension of the input space [56]. The compressed
dataset is then modeled with lazy learning and support vector regression. Zhang
et al. developed a new lazy learning procedure for QSAR, the automated lazy learn-
ing quantitative structure—activity relationships (ALL-QSAR) model [57]. A mole-
cular property of a query compound is predicted from a locally weighted linear
regression model that first selects a training set of compounds that have a high
similarity with the query compound, and then uses the structural descriptors and
molecular properties of the training set to make the prediction for the query com-
pound. The ALL-QSAR algorithm was tested for 48 anticonvulsant agents with
known EDs, values and for 48 antagonists of the dopamine D, receptor with known
competitive binding affinities K. The structural descriptors were computed with
Molconn-Z and comprise, among other graph descriptors and topological indices,
a wide array of E-state indices. The ALL-QSAR models for the anticonvulsant
agents (=0.90) and D, antagonists (r’=0.81) have higher statistics than those
obtained with other models, such as kNN, PLS, SVM or comparative molecular
field analysis. The anticonvulsant agents ALL-QSAR model was applied for a
database screening and it identified several known anticonvulsants that were
absent from the training set. The ALL-QSAR is an adaptive model that may be
used for online training and virtual screening of chemical libraries.

Estrogen receptors (ERs) are members of nuclear receptor family, and they are
essential in cell growth and development in various tissues. Chemical compounds
that are ER agonists have been used for prostate cancer treatment, contraception,
hormone replacement therapy and osteoporosis prevention. In contrast, the ER
agonist activity of some industrial chemicals, pesticides, and environmental pol-
lutants, is known to disrupt the human endocrine functions by mimicking endog-
enous estrogens. Such chemicals may induce cancers and disrupt the development
of the reproductive system. Li et al. used several machine learning procedures to
discriminate between ER agonists and nonagonists [58]. The dataset of chemical
compounds comprised 243 ER agonists and 463 ER nonagonists, for which more
than 1000 structural descriptors were computed. Simple statistical filters were
used to reduce the number of descriptors to 199 and then recursive feature elimi-
nation was applied to select those molecular indices that discriminate ER agonists
from ER nonagonists. Four machine learning procedures were evaluated, i.e.
SVM, kNN, PNN and C4.5 decision tree. The SVM model gives the best predic-
tions, as shown by the leave-20%-out cross-validation accuracies. Among the 31
descriptors selected by the recursive feature elimination procedure there are two
E-state indices, i.e. SSCH3 and SaaCH, whereas the other descriptors are various
topological, geometrical and quantum indices. The study suggests that SVM
classifiers are robust and reliable models for the prediction of ER agonists
and to identify the structural features that distinguish ER agonists from ER
nonagonists.
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An undesirable side-effect of chemical compounds that exhibit antihistaminic
activity is sedation, manifested as a reduced concentration capability. Duart et al.
used a dataset of 146 chemicals to develop a combination of linear regression and
linear discriminant analysis models to identify compounds with antihistaminic
activity and low sedative effect [59]. Starting from a diverse collection of topological
indices, it was found that the best classification function to identify antihistaminic
compounds contains six electrotopological indices, i.e. SdssC, SaaCH, SdsN,
SsssN, SsOH and SdO. Together with other equations based on topological indices,
the E-state indices were used to screen the chemical compounds from the Merck
Index and the most promising eight candidates were selected for experimental
tests. Tests performed with female Wistar rats confirmed the antihistaminic activ-
ity of all eight compounds, thus demonstrating the practical value of the graph
descriptors in screening large chemical libraries.

Antipsychotic compounds may belong to the class of dopamine antagonists (DA),
serotonin antagonists (SA) and serotonin—dopamine dual antagonists (Dual). The
design of selective antagonists may benefit from robust classifiers that discriminate
between DA, SA and Dual compounds. Kim et al. solved this problem with four
machine learning methods, i.e. linear discriminant analysis, soft independent
modeling of class analogy (SIMCA), recursive partitioning (RP) and ANN [60]. The
SAR dataset of 2772 compounds was collected from the MDDR database, and
contains 1135 DA (260 D,, 263 D; and 612 D,), 1251 SA (517 5-HT,, 447 5-HT),a
and 287 5-HT,c) and 386 Dual. The chemical structures were characterized with
constitutional and topological descriptors computed with Cerius®. Using a training
set of 2496 compounds and a prediction set of 276 compounds, it was found that
recursive partitioning has the highest prediction rate: 69.6% LDA, 63.4% SIMCA,
74.3 RP and 71.7% ANN. The key descriptors for the RP model are 12 topological
indices that include six E-state indices, i.e. SssCH2, SssO, SaasC, SdO, SsssN and
SssssC. The classifier that combines topological indices and decision trees may be
used for the virtual screening of DA, SA and Dual antagonists.

4.4
Conclusions and Outlook

In this chapter we presented an overview of the E-state, its computation from the
molecular graph and its applications in drug design. The E-state encodes at the
atomic level information regarding the electronic state and the topological acces-
sibility. The computation of the E-state indices is based exclusively on the mole-
cular topology and it can be done efficiently for very large chemical libraries.
Comparative studies that develop QSAR models from a large variety of molecular
descriptors show that the E-state indices encode a distinct type of structural infor-
mation. Due to this advantage, E-state indices are frequently selected in the best
QSAR models.

The atomic-level structural information encoded into the E-state generates a
chemical space that can be efficient in QSAR modeling and in the virtual screening
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of chemical libraries. The E-state indices are mature, with proven success in QSAR
modeling, and should be considered, together with other descriptors, in SAR and
QSAR applications that require a comprehensive exploration of the chemical
space.
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Polar Surface Area

Peter Ertl

Abbreviations

BBB blood-brain barrier

Caco-2  adenocarcinoma cell line derived from human colon
Clog P calculated octanol-water partition coefficient
CNS central nervous system

DM dipole moment

FA fraction absorbed

HCPSA  high-charged polar surface area

HTS high-throughput screening

MV molecular volume

MW molecular weight

PSA polar surface area

QSAR quantitative structure—activity relationship
SAP sum of atom polarities

TPSA topological polar surface area

Symbols

Patoms number of nonhydrogen atoms

Nupa number of H-bond acceptors

NuEb number of H-bond donors

Proth number of rotatable bonds

5.1

Introduction

Polar surface area (PSA) — defined simply as the part of a molecular surface that
is polar — is probably, together with the octanol-water partition coefficient, one of
the most important parameters used to characterize the transport properties of
drugs. PSA has been shown to provide very good correlations with intestinal
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absorption, blood-brain barrier (BBB) penetration and several other drug charac-
teristics. It has also been effectively used to characterize drug-likeness during
virtual screening and combinatorial library design. The descriptor seems to encode
an optimal combination of H-bonding features, molecular polarity and solubility
properties. An additional advantage of PSA is that it can be easily and rapidly cal-
culated as a sum of fragment contributions using only the molecular connectivity
of a structure.

Molecular surface properties have been used to describe solvation and partition-
ing processes for a long time. Amidon et al. [1] studied the correlation of surface
properties, expressed in terms of hydrocarbon portions and functional group por-
tions, with the aqueous solubility. Pearlman [2] discussed various applications
of molecular surface and volume in quantitative structure—activity relationship
(QSAR) studies, and Stanton and Jurs [3] suggested using charged partial surface
area descriptors, which combined molecular surface area and atomic charges, for
the development of various structure—property models. One of the most useful
surface properties has been shown to be PSA, characterizing the polar part of the
molecular surface, defined simply as the part of the surface corresponding to
oxygens and nitrogens, and including also the hydrogens attached to these atoms
(Fig. 5.1). One of the first applications of PSA is a study of Van de Waterbeemd
and Kansy [4] to predict BBB penetration. Van de Waterbeemd et al. [5] also used
this parameter to predict the Caco-2 permeability of drugs (in these papers the
name “polar part of the surface” was still used). The popularity of the PSA descrip-
tor for predicting drug transport properties can mainly be attributed to the pioneer-
ing work of the Uppsala University Group [6, 7]. They used the so-called “dynamic
PSA” in which the polar surface was calculated as a weighted sum of surfaces
generated from a representative set of conformations (see the method section for
more details). Clark showed later that static, or single-conformer, PSA also pro-
vides very good results in the prediction of intestinal absorption [8] and BBB pen-
etration [9]. Finally, Ertl et al. [10] introduced an extremely rapid method to obtain
PSA descriptor simply from the sum of contributions of polar fragments in a
molecule without the necessity to generate its three-dimensional (3D) geometry.
These and many other studies helped to establish PSA as one of the most

Fig. 5.1 PSA of atenolol.
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Fig. 5.2 Number of publications using the PSA descriptor in years 1990-2005.

important molecular descriptors used in medicinal chemistry, cheminformatics
and QSAR studies.

The recent increase of interest in PSA can also be demonstrated by the number
of publications mentioning this descriptor over the past 15 years—as counted by
the popular scientific search engine Google Scholar [11]. In Fig. 5.2, one can see
that until around 1993 the term “PSA” was practically unused in scientific publica-
tions, the first increase is visible in the period 1994 to 2001, while in more recent
years a very steep increase in the number of publications using this descriptor has
been witnessed.

5.2
Application of PSA for Prediction of Drug Transport Properties

The extreme popularity of PSA descriptors for the prediction of drug absorption
[12-14] can be attributed to several reasons. First, PSA is very easy to interpret,
with the notion of “molecular polar surface” and its influence on interactions with
a molecule’s environment similar to a medicinal chemist’s own intuition (and
probably also a good approximation of physical reality). Second, PSA is easy to
calculate. For topological PSA the calculation is particularly easy and fast, requir-
ing only the identification of polar fragments and then a table lookup to find
respective fragment contributions. Furthermore, numerous software packages, as
well as free resources on the internet, are available for calculating this descriptor.
The most important benefit of PSA, however, is that it indeed provides excellent
correlations with various drug transport characteristics as documented below. PSA
seems to optimally encode those drug properties which play an important role
in membrane penetration: molecular polarity, H-bonding features and also
solubility.
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5.2.1
Intestinal Absorption

For the majority of drugs, the preferred administration route is by oral ingestion
which requires good intestinal absorption of drug molecules. Intestinal absorption
is usually expressed as fraction absorbed (FA), expressing the percentage of initial
dose appearing in a portal vein [15].

PSA has been identified as one of the best parameters for the prediction of
intestinal absorption. The dynamic PSA was correlated to in vitro intestinal drug
transport for a series of B-adrenoreceptor antagonists [6]. The excellent sigmoidal
relationship between PSA and FA after oral administration in humans was
obtained [7] for a series of structurally diverse drugs that were carefully selected
to avoid contributions from factors other than passive permeability (such as metab-
olism, bad solubility or transport by active mechanism) and covering a broad range
of physicochemical properties. Similar sigmoidal relationships can also be obtained
for the topological PSA (TPSA) [16] (Fig. 5.3). These results suggest that drugs
with a PSA<60A? are completely (more than 90%) absorbed, whereas drugs with
a PSA>140A? are absorbed to less than 10%. This conclusion was later confirmed
with the correct classification of a set endothelin receptor antagonists as having
either low, intermediate or high permeability [17].

PSA was also shown to play an important role in explaining human in vivo
jejunum permeability [18]. A model based on PSA and calculated log P for the
prediction of drug absorption [19] was developed for 199 well-absorbed and 35

Fraction absorbed [%]

0 50 100 150 200 250 300
TPSA [A™2]
Fig. 5.3 Sigmoidal relationship of intestinal absorption with TPSA for 20 representative drugs.
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poorly absorbed compounds. This model allowed the visualization of a “bioavail-
ability area” within an ellipse on a log P-PSA plot. Such visualization is quite
straightforward for a medicinal chemist to interpret. Winiwarter et al. [20] studied
PSA and other molecular descriptors, characterizing H-bond strength, to describe
intestinal absorption. The best results were obtained by combining lipophilicity
and H-bond donor descriptors. The %PSA descriptor, characterizing the percent-
age of the molecular surface that was polar, was used to study a series of oral drugs
that were launched prior 1983, and also between 1983 and 2002 [21]. Unlike other
molecular descriptors, the %PSA ratio remains roughly constant between these
two periods, suggesting that it is one of the most important oral drug-like physi-
cochemical properties.

Since experimental determination of intestinal absorption is quite demanding,
Caco-2 cell monolayers have been successfully used to model passive drug absorp-
tion. Several models for the prediction of Caco-2 permeability using PSA were
developed, including those of van de Waterbeemd et al. [5] and Palm et al. [22]
who found that relationships between Caco-2 permeability and PSA, is stronger
than with Clog D, Krarup et al. [23] who used dynamic PSA calculated for water
accessible molecular surface and Bergstrom et al. [24].

5.2.2
Blood—-Brain Barrier Penetration

The BBB is a complex cellular system which protects the central nervous system
(CNS) by separating the brain from the systemic blood circulation. Drugs that act
on the CNS need to be able to cross the BBB in order to reach their target, while
minimal BBB penetration is required for other drugs to prevent CNS side effects.
A common measure of BBB penetration is the ratio of drug concentrations in the
brain and the blood, which is expressed as 10g (Cizin/ Chicod)-

Van de Waterbeemd and Kansy were probably the first to correlate the PSA of
a series of CNS drugs to their membrane transport [4]. They obtained a fair correla-
tion of brain uptake with single-conformer PSA and molecular volume descriptors.
Clark [9] derived a good quality model for 55 diverse molecules using single-
conformer PSA and calculated log P. A very similar equation is also obtained when
using fragment based TPSA [16] (Eq. 1) and TPSA in combination with Clog P
(Eq. 2 and Fig. 5.4).

logBB=0.516—-0.115x TPSA (1)
n=551>=0.686,r = 0.828, 2 =0.659, F = 115.9, 6 = 0.42

logBB = 0.070 — 0.014 X TPSA +0.169 x Clog P 2)
n=551>=0.787,r = 0.887,1%=0.756, F = 95.8, 6 = 0.35

Kelder et al. [25] collected a set of 776 orally administered CNS drugs that are
known to be passively transported into the brain and have entered at least phase
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Fig. 5.4 Experimental versus calculated (Eq. 2) log BB for 55 molecules.

IT clinical trials. Single-conformer PSA values were calculated for these com-
pounds and the results analyzed as a frequency histogram. This analysis showed
that the great majority of orally administered CNS drugs have a PSA of <70A2 A
similar analysis of 1590 orally administered non-CNS compounds suggested that
the majority of these have a PSA <120 A% Clearly, the BBB provides a significantly
tighter constraint on PSA than the intestinal membrane, probably because of the
presence of the tight junctions. These results suggest a possible “window of oppor-
tunity” for designing non-CNS penetrating, orally absorbed compounds by keeping
PSA values between 70 and 120A%.

In a recent study involving 150 chemically diverse compounds [26] the following
global BBB penetration model was obtained:

logBB = 0.064 — 0.01 X TPSA +0.20 X Clog P (3)

n=150,r*=0.69, 7% =0.60

The authors noted, however, that the separation of compounds into chemically
similar classes considerably improves the construction of predictive BBB penetra-
tion models.

Numerous other QSAR models relating BBB penetration to calculated molecu-
lar descriptors have also appeared in literature; see for example [27-29]. In each
case, PSA was identified as one of the most important parameters determining
blood-brain barrier penetration.
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5.23
Other Drug Characteristics

As already discussed, PSA encodes molecular polarity and H-bonding potential
particularly well; therefore, it is not surprising that this descriptor is also useful
for the prediction of various other molecular characteristics. PSA has been shown
to be one of the most important descriptors for the development of models to
predict water solubility of organic molecules [30-32], to explain nonspecific binding
[33], critical micelle concentration [34] and to identify promiscuous aggregating
inhibitors [35]. Another possible application of PSA is identification of compounds
with increased risk of nonspecific toxicity [36]; in this study PSA was used together
with other global molecular descriptors. In an interesting study, calculated molecu-
lar properties including PSA were used to classify metabolites of Escherichia coli
[37] to help to understand the metabolome diversity of this organism.

5.3
Application of PSA in Virtual Screening

In the quest for identifying new bioactive molecules, high-throughput screening
(HTS) methodologies are routinely used. Many large pharmaceutical companies
have set-up whole HTS factories, which are able to screen more than half a million
molecules on a particular target. However, even such an enormous screening
throughput is not sufficient. The number of small, drug-like compounds available
for screening is much larger, not to mention virtual molecules which are in the
chemists minds but have not yet been synthesized. Any of these new structures
may possess the unique bioactivity and become the next big “blockbuster”. One
has to find a compromise between spending resources on purchasing/synthesiz-
ing and screening samples, and the possibility to cover the largest possible area
of a reasonable chemistry space, providing the highest probability of hits. Various
cheminformatics methodologies are used in this virtual screening process. These
include simple “junk removal” screens discarding molecules containing too reac-
tive or toxic substructures, or molecules with global physicochemical properties
outside the ranges generally populated by drugs. Many virtual screening methods
are based on the calculation of various scores, which allow the prediction of
bioactivity for untested molecules. Such scores are usually obtained by various
machine learning methods using a set of known molecules with desired activity
as a training set. Finally, the most sophisticated virtual screening technique —
virtual docking — is based on the fitting of a putative ligand structure into the
respective receptor and selecting molecules with the best fit.

Calculated molecular descriptors are used routinely in the virtual screening
process to discard molecules with properties outside the range defined by a set of
common drugs, since such outliers would have a high probability of having serious
bioavailability problems [38-40]. The most commonly used descriptors used in
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such screening include calculated log P, molecular weight and number of hydro-
gen donors and acceptors, as suggested by the well known “Rule-of-5” [41]. Of
course, PSA itself is also very well suited to distinguishing between bioavailable
molecules and those with possible bioavailability problems. As discussed in previ-
ous sections, molecules usually require a PSA of below 140-150 A2 to show accept-
able bioavailability. For drugs acting on the central nervous system, which must
therefore pass the BBB, this value should be below 70-80A2 A combination of
PSA and the number of rotatable bonds in molecule was shown to correlate well
with the oral bioavailability [42]. The authors studied the oral bioavailability in rats
on a set of 1100 drug candidates and found that compounds with 10 or fewer
rotatable bonds and a PSA less than 140A? had a high probability of being orally
bioavailable in rat.

We have to keep in mind, however, that neither the value of PSA nor actually
any other single in silico generated descriptor should be used as a “kill criterion”
when discarding molecules in virtual screening or selecting structures for follow-
up in medicinal chemistry projects. All calculated parameters can only provide
hints about the expected properties of a molecule and its bioavailability and should
be used together to form a “consensus score” to rank screened molecules. A very
nice example of such a “concerted approach” is a study [43] where various 2D and
3D virtual screening techniques were used to identify novel and potent agonists
of the melanin-concentrating hormone 1 receptor.

At Novartis, so-called “Bioavailability Radar Plots” [44] are used to visually
display the oral absorption potential of molecules. On these plots five important
calculated descriptors (log P, molecular weight, PSA, number of rotatable bonds
and water solubility score [45]) are displayed on the axes of a pentagonal radar plot
and compared with predefined property limits (green area) which were determined
by the analysis of marketed oral drugs. These plots provide an intuitive tool that
displays multiple parameters as a single chart in a straightforward but informative
way, providing visual feedback about the molecule’s bioavailability potential
(Fig. 5.5).

Closely related to the use of PSA in virtual screening is its application in the
design of combinatorial libraries with optimal properties. These applications are
reviewed further in Refs. [46, 47], for example.

(a) logP (b) logP

nrotb MW nroth MW

Ws ~ PSA W5 PSA

Fig. 5.5 Bioavailability plots for molecules with “good” (a) and “bad” (b) characteristics.
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5.4
Calculation of PSA

In its initial application [4, 5], PSA was calculated from a single molecule confor-
mation by summing-up the surface contributions of polar atoms. Per Artursson
and coworkers at Uppsala University introduced the so called “dynamic” polar
surface (PSA,) [6] by also taking into account molecular flexibility. The calculation
of PSA, requires a full conformational search for a molecule including geometry
optimization to generate a set of low-energy conformers. The PSA is then calcu-
lated for all conformers within 2.5kcalmol™ of the lowest energy conformer. The
actual value of PSA, is obtained by taking the Boltzmann-weighted average of the
single-conformer values. Several publications show that PSA, provides very good
correlations with drug transport characteristics. The disadvantage of this approach,
however, is that the full conformational search followed up by geometry optimiza-
tion is computationally expensive. This makes PSA,; unsuitable for processing
large datasets and, therefore, for virtual screening applications. This prompted
investigations into the applicability of single-conformer, or static, PSA. Clark
showed that single-conformer PSA performs very well for prediction of intestinal
absorption [8], as well as for BBB penetration [9]. Kelder [25] also reported very
good correlations between static and dynamic values (r=0.978) for 45 drugs, with
notable differences only observed for cases involving hydrophobic collapse or
strong intramolecular interactions.

Several enhancements to the standard 3D PSA approach have been suggested.
Hou et al. [48] included contributions to polar surface from only atoms with
charges (as calculated by the Gasteiger—Marsili method) above a certain limit. This
approach was termed high-charged PSA (HCPSA). Saunders and Platts [49] also
considered in PSA calculations the H-bonding strength of particular polar frag-
ments. In this approach, the polar surface belonging to functional groups is
multiplied by a scaling factor characterizing their experimentally determined H-
bonding strength. Recently, %PSA descriptors, based on the ratio between PSA
and total molecular surface area, were also introduced to characterize the proper-
ties of oral drugs [21].

The daily cheminformatics business within the pharmaceutical industry requires
properties to be calculated for datasets containing millions of molecules, including
in-house structures, compound collections from various commercial sample
providers or virtual libraries, for example. The rapid calculation of PSA for large
numbers of molecules was the main motivation for the development of a method
based on fragment contributions. Since the only information required for the cal-
culation is molecular topology (connectivity), this approach is also often referred
to as topological PSA-TPSA [10]. The fragment polar surface contributions were
obtained by fitting TPSA, calculated as a sum of fragment contributions, with
“real” 3D PSA values calculated for a dataset of 34810 drugs from the World Drug
Index. The final correlation between TPSA and 3D PSA was excellent, with squared
correlation coefficient #=0.982 (Fig. 5.6). In the original paper, in addition to
contributions of oxygen and nitrogen atoms, also fragments centered on sulfur
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Fig. 5.6 Correlation of 3D PSA and TPSA for 34810 drug-like molecules (r?=0.982).

and phosphorus atoms were examined, although since these fragments did not
usually provide an improvement in the correlations [50], the use of only oxygen
and nitrogen fragments seems to provide the best choice for PSA calculations.

The most significant differences between TPSA and 3D PSA were observed
for large macrocycles containing many polar substituents These substituents are
usually buried in the center of the ring and are therefore not accessible to solvent.
Fragment-based TPSA provided larger values than 3D PSA in such cases.

The possibility to calculate the PSA descriptor, particularly by the fragment-
based approach, is currently available in many commercial and freely available
software packages. For instance, the author of this chapter has released an open
source C code [51] to calculate PSA. This program requires the Daylight toolkit to
process SMILES and generate a molecule object, but the code can be easily modi-
fied to work with other chemistry development environments. The program was
also later translated to PERL [52] where dependence on the Daylight toolkit was
replaced by the PerlMol modules. The method for calculation of TPSA was also
implemented in Java in the Chemistry Development Kit [53] and in the JOELib
package [54]. Additionally, a free web service to calculate PSA (together with
several other useful molecular descriptors) is available on the Internet [55]
(Fig. 5.7).
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Fig. 5.7 Calculation of PSA and other molecular descriptors on the Internet [55].

5.5

Correlation of PSA with other Molecular Descriptors

Descriptors used to characterize molecules in QSAR studies should be as inde-
pendent of each other (orthogonal) as possible. When using correlated parameters
there is an increased danger of obtaining non-predictive, chance correlation [56].
To examine the correlation between PSA (calculated according to the fragment-
based protocol [10]) and other descriptors, we studied a collection of 7010 bioactive
molecules from the PubChem database [57]. In addition to PSA, the following
parameters were used:

CLOGP

Nypa

NyBD

MV
MW
Natoms

Proth

calculated octanol-water partition coefficient [58]
number of H-bond acceptors (any oxygen or nitrogen atom was

considered as an “acceptor”)

number of H-bond donors (any —OH or —NH moiety was considered

to be a “donor”)
molecular volume [59]
molecular weight
number of nonhydrogen atoms
number of rotatable bonds
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DM dipole moment calculated by the AM1 semiempirical method [60] for
fully optimized molecular structure, starting from the CORINA [61]
geometry

SAP sum of atom polarities — sum of absolute values of AM1 charges on

nonhydrogen atoms

All of these parameters (with the possible exception of SAP) are frequently used
in QSAR studies or as filters in virtual screening. The SAP descriptor was included
to check for correlations between PSA and quantum chemically calculated
charges.

The correlation matrix for these 10 descriptors is shown in Table 5.1. As
expected, PSA shows the highest correlation with the number of H-bond acceptors
(r*=0.924) and number of H-bond donors (r’=0.736). Thus, in QSAR studies
these parameters should not be used together. We recommend the use of PSA
because this descriptor provides a more detailed description of H-bonding acces-
sible area than just simple atom counts. Another descriptor with which PSA cor-
relates is SAP (r’=0.425). When calculating SAP, charges on all nonhydrogen
atoms were considered. Probably an even better correlation with PSA would be
obtained by considering charges not on all atoms, but only on atoms with charge
above (or below) some predefined cut-off value.

To further analyze the relationships within descriptor space we performed a
principle component analysis of the whole data matrix. Descriptors have been
normalized before the analysis to have a mean of 0 and standard deviation of 1.
The first two principal components explain 78% of variance within the data. The
resultant loadings, which characterize contributions of the original descriptors to
these principal components, are shown on Fig. 5.8. On the plot we can see that
PSA, nypp and nypa are indeed closely grouped together. Calculated octanol-water
partition coefficient CLOGP is located in the opposite corner of the property space.
This analysis also demonstrates that CLOGP and PSA are the two parameters with

Tab. 5.1 Cross-correlations (expressed as r?) between popular molecular descriptors (see text).

PSA CLOGP nyp, Nygp Natoms MW MV Nyoth DM SAP

PSA 1.000 0.299 0.924 0.736  0.341 0.364 0.258 0.157 0.158 0.425
CLOGP 0.299 1.000 0.221 0.351 0.054 0.041 0.093 0.023 0.034 0.019
Miipa 0.924 0.221 1.000 0.539 0.447 0.466 0.346 0.194 0.188 0.463

[ 0.736  0.351 0.539 1.000 0.137 0.150 0.108 0.075 0.055 0.161
Patoms 0.341  0.054 0.447 0.137 1.000 0.952 0964 0.332 0.093 0.377
MW 0.364 0.041 0.466 0.150 0.951 1.000 0.922 0.336 0.100 0.430
MV 0.258 0.093 0.346  0.108 0.964 0.922 1.000 0.403 0.062 0.340
Proth 0.157  0.023 0.194 0.075 0.332 0.336 0.403 1.000 0.012 0.195
DM 0.158 0.034 0.188 0.055 0.093 0.100 0.062 0.012 1.000 0.152

SAP 0.425 0.019 0.463 0.161 0.377 0.430 0340 0.195 0.152 1.000
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Fig. 5.8 Loadings characterizing 10 molecular descriptors.

the highest information content for characterizing molecular physicochemical
properties.

5.6
Conclusions

The diverse examples of PSA applications presented here clearly demonstrate that
this descriptor has become a standard tool in the repertoire of medicinal chemists,
computational chemists and cheminformatics specialists. Even though PSA can
be calculated very easily, it is a very useful parameter for assessing drug-likeness
and bioavailability potential of drugs under development, characterizing virtual
molecules when selecting molecules for screening, and guiding the design of
combinatorial libraries with optimal properties.
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>C, sum of H-bond acceptor free energy factors
2Cy sum of H-bond donor free energy factors
En optimum H-bond energy

R, optimum H-bond length

o molecular polarizability

log P partition coefficient

log S solubility

FA fraction absorbed

6.1

Introduction

Interactions between H-bond donor and H-bond acceptor molecules result in the
formation of many molecular and ionic complexes that are of great importance in
chemical and biochemical processes including enzymatic catalysis. H-bond com-
plexes are especially important in biological systems because they play crucial roles
in macromolecular structures and in molecular recognition. DNA and proteins
are held together in their defined three-dimensional (3D) structures primarily by
H-bonds. The double helix of DNA and RNA structures, the peptide and protein
secondary structures like o-helices, B-sheets, and B- and y-loops, and the tertiary
structures of proteins are formed by H-bonds (enthalpy contributions) and by
hydrophobic contacts (primarily entropy contribution) [1]. In addition, H-bonding
also affects membrane transport and the distribution of drugs within biological
systems. Accordingly, there have been many attempts to quantify H-bond param-
eters from the beginning of development of quantitative structure—activity relation-
ship (QSAR) studies and computer-aided drug design. Many different types of
H-bond descriptors are used in this field, including indicator variables, numbers
of H-bond donors or/and acceptors, atomic and molecular surface area, quantum-
chemical descriptors, and thermodynamic and solvatochromatic parameters.
Each of these descriptors directly or indirectly describes the complex process of
H-bonding on different levels. The hierarchy of its information content is
shown in Fig. 6.1 in analogy to the presentation of molecular structure levels in
Ref. [2].

Descriptors of the lowest level (indirect H-bond parameters, H-bond indicators,
surface H-bond indicators) indicate trends; for example, the more H-bond groups
in a molecule the better is its solubility in water, or the greater the polar surface
area (PSA) value, the lower is the intestinal absorption in humans. Descriptors at
the intermediate level (enthalpy and free energy factors) allow quantitative assess-
ments of H-bond interactions of single pairs of acceptor and donor atoms. Descrip-
tors at the next higher level (distance H-bond potentials, surface thermodynamics
parameters) give quantitative descriptions of H-bonding at optimum arrange-
ments of partners. The calculation of thermodynamic parameters, including dis-
tance and angle dependencies of potentials as well as the influence of substituents



6.2 Two-dimensional H-bond Descriptors

Energies of 3D H-bond interactions with distance
and angle dependences of H-bond potentials

Surface thermadynamics descriptors
Distance H-bond potentials

2-D Thermadynamic descriptors

Surface H-bond indicator descriptors

H-bond indicators

Indirect
H-bond
parameters

Fig. 6.1 Information content and relationships of H-bond descriptors.

on the H-bond capacity, can be considered as the highest level of quantitative
H-bonding description.

This chapter describes and classifies H-bond descriptors, and indicates possible
areas of their application in QSAR studies and drug design. Similar analyses were
presented in previous articles [3-5].

6.2
Two-dimensional H-bond Descriptors

Two-dimensional H-bond descriptors are included in Table 6.1. Considering infor-
mation content, they may be classified as indirect descriptors (no direct link with
the H-bonding process), H-bond indicators (atoms having potential H-bond capa-
bility) and thermodynamic factors (calculated on the basis of experimental ther-
modynamic data of H-bonding).

6.2.1
Indirect H-bond Descriptors

The first publications in this field appeared in the 1970s. Seiler [6] studied
the differences in log P in the systems octanol-water and cyclohexane-water
(Alog Pojychyw) to develop some measure of the contribution of H-bonding (Iy).
Moriguchi investigated log P in octanol-water for polar and nonpolar compounds
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Tab. 6.1 Two-dimensional H-bond descriptors.

Name or meaning Type Symbol Reference
The difference between octanol-water and indirect Iy 6
cyclohexane-water log P values
The difference log P octanol-water for polar and  indirect Ey 7
nonpolar chemicals with the same molecular
weight
The atomic charge on the hydrogen atom indirect Oxn 4,8,9
The energy of the lowest unoccupied molecular indirect ELUMO 4,8,9
orbital
The electron donor superdelocalizability indirect Dy 4,8-11
The self-atom polarizability indirect Py 4,8-11
The charge on the most negatively charge atom indirect Omn 4,8,9
The energy of the highest occupied molecular indirect Euomo 4,8,9
orbital
Surface electrostatic potential maxima indirect Vi max 12
Electrostatic potential minima indirect Vinin 12
sum of donors (OHs + NHs), sum of acceptors indicator N,, N4 17
(Ns + Os)

Infrared or nuclear magnetic resonance spectral thermodynamic ~ Avey, 8y 20, 21
shifts

Parameter of acidity thermodynamic A 23

Parameter of basicity thermodynamic B 23

H-bond acceptor enthalpy and free energy thermodynamic  E, C, 27
factors

H-bond donor enthalpy and free energy factors thermodynamic  E4, Cqy 27

Sum of absolute values of free energy H-bond thermodynamic  £Cy 30
factors

with the same molecular volume [7]. The descriptors they found were calculated
from experimental values of properties that contain, in hidden form, an H-bond
component together with other factors. The separation of these factors is a special
problem.

Other indirect H-bond descriptors are generated from quantum-chemical calcu-
lations. The atomic charge on hydrogen (Qy), the energy of the lowest unoccupied
molecular orbital (Eyyo), electron donor superdelocalizability (Dy), atomic polariz-
ability (Pg) and surface electrostatic potential maxima (V; ,,,) were used to charac-
terize H-bond donor ability [4, 8-12]. The charge on the most negative atom (Qyp),
the energy of the highest occupied molecular orbital (Ejomo) and the electrostatic
potential minima (V,y;,) were used to characterize H-bond acceptor ability [4, 8, 9,
11]. Correlations between such theoretical H-bond descriptors and experimental
properties of H-bond complexes were not satisfactory. For example, Gancia et al.
[11] indicate that none of the calculated properties showed a high correlation to
the H-bond equilibrium constants when considering a dataset of 124 compounds
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(including 31 OH and 27 NH proton donors, and 35 oxygen and 31 nitrogen proton
acceptors). Only for separate subsets were reasonable correlations found (correla-
tion coefficients between 0.77 and 0.92). Thus, these theoretical parameters cannot
be considered as practical H-bond descriptors despite their rather wide and some-
times successful use in QSAR (see, e.g. Refs. [13, 14]).

6.2.2
Indicator Variables

Another approach is to use indicator variables where a value of 1 is given if an H-
bond can be formed or 0 if it cannot. This was first proposed by Fujita et al. [15].
Charton and Charton [16] indicated the types and numbers of H-bonds that a
molecule is capable of forming. The simplest such indicator is the number of
oxygen and nitrogen atoms (N,), and the number of hydrogen atoms on oxygen
and nitrogen (N,) in a molecule. These descriptors, which are included in the
software of Accelrys, ACD and others, became popular in QSAR and drug design
especially after introduction of the “Rule-of-5” [17]. However, such indicator vari-
ables have a very small information content and do not reflect the influence of
substituents near H-bond acceptor or donor atoms. N, and Ny are too crude to
quantitatively characterize H-bond contributions, and the “Rule-of-5” should be
seen as a qualitative absorption/permeability predictor [18].

6.2.3
Two-dimensional Thermodynamics Descriptors

In H-bond complexes, it is possible to consider spectral shifts of appropriate bands
in infrared spectra (Avoy) or proton shifts in nuclear magnetic resonance spectra
(On) as quantitative H-bond parameters [19, 20]. However, the most reliable way
to describe H-bonding quantitatively is to consider the thermodynamics of H-bond
complexation. For any process, Eq. (1) describes the thermodynamic relationships
among the following properties: AH (the change in enthalpy), AG (the change in
free energy), AS (the change in entropy), the binding constant (K) and the absolute
temperature (in K). R is the universal gas constant:

AG=-RTInK =AH-TAS (1)

Binding constants of H-bond complexes are normally used to create H-bond scales
[21-23], e.g. in accordance with Ref. [22]:

logK =7.3540.}'B5 (2)
where off and B} are parameters of acidity and basicity scales.

A multiplicative approach to describe the enthalpy and free energy of H-bonding
was developed by Raevsky et al. [3, 24-27]. From a large number of their own
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experimental values and data from the literature, these authors established a data-
base of thermodynamic parameters of H-bond complexes in different solvents.
They selected 936 systems to construct a unified scale of H-bond donor and accep-
tor factors [26]. Those systems satisfied the following criteria:

« The complex stoichiometry had to be 1:1.

« The reaction was carried out in the nonpolar, aprotic solvent carbon
tetrachloride.

« Both AG and AH had to be measured for each reaction.

« Both AG and AH were estimated by direct experimental procedures. Data
obtained using any type of estimation of those values, including
spectroscopic absorption shifts and intensities or some other such
parameters, were excluded from consideration.

Phenol and hexamethylphoshoramide (HMPA) were selected, respectively, as
the standard H-bond donor and H-bond acceptor with their values fixed on free
energy and enthalpy H-bond scales: for phenol, -2.50 for the H-bond donor
enthalpy factor (Ej) and also for the H-bond donor free energy factor (Cy); for
HMPA, 2.50 for the H-bond acceptor enthalpy factor (E,) and 4.00 for the H-bond
acceptor free energy factor (C,).

The best fit equations for all the calculated factors were:

AH = 4.96(k] mol ™)E, E4 (3)
AG =2.43(k] mol )C,Cq )

Correlations of calculated and experimental enthalpy, and calculated and experi-
mental free energy values for the indicated 936 systems gave the following
results:

AH e = =0.27(+0.45) + 1.00(+0.02)A H., (5)
n=936,r>=0.91,5=2.70, F = 9553
AGeye = =0.07(+0.12) +1.00(0.01)AG,,, (6)

n=936,r>=0.97,s=1.11, F = 28556

where n is the number of compounds, r is the correlation coefficient, s is the
standard deviation and F is the Fisher criterion.

Thus, the statistical criteria for Egs. (5) and (6) show that the approach provides
a reasonably reliable method to calculate H-bond enthalpy and free energy.

From 163 calculated H-bond donor and 195 calculated H-bond acceptor factors,
one can get enthalpy and free energy values for 31785 reactions using Egs. (3) and
(4). Later, the number of H-bond factor values was significantly increased. A
special program for calculating factor values was created and included in the
HYBOT (Hydrogen Bond Thermodynamics) program [28, 29]. The current version,
HYBOT-2006, has about 20000 values of H-bond acceptor factors and about 5000
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values of H-bond donor factors of diverse compounds. It allows the calculation of
the H-bond strength of any existing or any conceivable new compound with suf-
ficient accuracy.

Table 6.2 demonstrates large intervals of enthalpy and free energy H-bond donor
and acceptor factor values as result of a different nature of H-bonding atoms as
well as an influence of substituents at those atoms on its H-bond capability.

The satisfactory correlations between Kamlet-Abraham'’s acidity parameters and
H-bond donor free energy factors, and between Kamlet-Abraham’s basicity param-
eters and H-bond acceptor free energy factors for many sets of compounds [26]
deserve particular mentioning:

Cy=0.10(0.08) — 4.47(+0.18)at! (7)
N=63,r2=0.98,5=0.18, F = 2469

However, the HYBOT approach utilizes significantly larger data sets of H-bond
factor values and is useful not only for calculating binding constants (free ener-
gies), but also for calculating the enthalpy of H-bonding. This is especially impor-
tant in considering the H-bonding of compounds containing donor and acceptor
atoms that can simultaneously form different H-bonds with essential entropy term
contributions.

The situation differs essentially for correlations between thermodynamic
desriptors and H-bond indicators. Graphical comparison of indicator N, and

Tab. 6.2 Enthalpy and free energy H-bond donor and acceptor
factor values for a few chemicals [28].

NN Chemicals E, E, C, Cy
1 CH,;0H 1.53 -2.34 1.76 -1.63
2 C,H,OH 1.50 -1.44 1.60 -1.32
3 CF,CH,0H 1.49 -1.51 1.34 -2.43
4 C(CF;);0OH 1.49 -1.53 1.53 -3.50
5 C¢H;OH 0.97 -2.47 0.97 -2.49
6 3-NO,C¢H,OH 0.97 -2.85 0.69 -3.45
7 4-NO,C,H,OH 0.97 -2.97 0.63 -3.57
8 CH,;COOH 1.37 -3.01 1.37 -2.58
9 CH,CICOOH 1.14 -3.01 1.20 -3.50

10 CCl,COOH 1.14 -3.01 0.80 -4.75

11 CH;C(O)CH; 1.60 - 1.95 -

12 CH,C(O)C¢Hs 137 - 175 -

13 CH,C(O)N(CH,), 186 - 288 -

14 C,Hs—0—C,H; 1.49 - 1.54 —

15 C¢H;—O—CH; 1.00 - 0.90 -

16 [(CH;),N];PO 2.52 - 4.00 -
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Fig. 6.2 Graphical comparison of indicator and thermodynamics H-bond factors.

thermodynamic XC, H-bond acceptor descriptors for 7826 drugs and “drug-like”
chemicals with N, < 10 is given in Fig. 6.2, indicating that, for any fixed N, value,
the differences among the corresponding H-bond acceptor factor values can be
very large. For example, in a set of compounds with N, = 4 the sums of H-bond
acceptor factors range from XC, = 2.30 for metrazole to 8.17 for pirolazamide.
Whereas N, values are the same for any acceptor atom in a molecule, £C, consid-
ers the type of acceptor and donor atoms as well as substituents near those atoms.
Thus, despite acceptable inter-relation (* = 0.71), these descriptors differ essen-
tially in their information content about H-bonding.

6.3
Three-dimensional H-bond Descriptors

Short description of 3D H-bonding parameters and descriptors is included in
Table 6.3.

6.3.1
Surface H-bond Descriptors

PSA is also used as H-bond descriptor to predict various properties of chemicals
and drugs. PSA is defined as that part of a molecular surface that arises from
oxygen and nitrogen atoms, and also the hydrogens attached to them. Applications
of PSA as a QSAR descriptor in correlations with permeability and absorption
were carried out first by Van de Waterbeemd et al. [30] and Palm et al. [31]. Clark
[32-34] developed this further. Chapter 5 in this book is completely devoted to
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Tab. 6.3 Three-dimensional H-bonding parameters and descriptors.

Name or meaning

Symbol and formula

Polar surface area [30, 35]
Van der Waals acceptor surface area which is
proportional to E,[38, 39]

Van der Waals acceptor surface area which is
proportional to C,[38, 39]

Van der Waals donor surface area which is
proportional to Eg[38, 39]

Van der Waals donor surface area which is
proportional to Cy[38, 39]

Optimum H-bond enthalpy for three types of
complexes [41]

3D H-bond distance descriptors [45]

SIS of H-bond interactions [45]

H-bonding potential [47]

Surface area around a molecule where optimum
enthalpy of interactions of acceptor atoms
with H-bond donor probe is realized [38, 39]

Surface area around a molecule where optimum
free energy of interactions of acceptor atoms
with H-bond donor probe is realized [38, 39]

Surface area around a molecule where optimum
enthalpy of interactions of donor atoms with
H-bond acceptor probe is realized [38, 39]

Surface area around a molecule where optimum
free energy of interactions of donor atoms
with H-bond acceptor probe is realized [38, 39]

Sum of enthalpy values (kcalm™ A?) of
interactions between the acceptor atoms in a
molecule and donor probe on OEASA [38, 39]

Sum of enthalpy values (kcalm™ A?) of
interactions between the donor atoms in a
molecule and an acceptor probe on OEDSA
38, 39]

PSA, PSA,, TPSA
WEASA = (1. .. n)k,E,

n = number of acceptor atoms, k, = 1/ SS— and Sp =
(9

sphere surface with a radius of 1.36A (O sp’)
WFEASA = X(1. .. n)k,C,

n = number of acceptor atoms, k, = 1/ SS— and Sp =
(9

sphere surface with a radius of 1.36A (O sp’)

n= number of donor atoms, kg = 1/55— and Sy =
H
sphere surface with a radius of 1.08 A (H atom)

WFEDSA = X(1 . . . mkyCy" U3

n = number of donor atoms, k4 = 1/55— and Sy =
H
sphere surface with a radius of 1.08 A (H atom)

E,(OHO), E,,(OHN), E,,(NHN)

HBAA,HBDD,HBAD
SIS+ +,SIS— —, SIS+ —
MHBP
OEASAope = Z(1 . . . m)kag1a)EaEgiprobe)
Egprobe) = enthalpy factor of the probe H-bond donor

Yy 3. Sim is the surface area of sphere

and k, = 1/20

with a radius of r,, = 2.45 A for the strongest
H-bonding
OFEASAprobe = Z(1 ce n)ka(Hd)CaCd(probe)

Cy(probe = free energy factor of the probe H-bond

donor and k, = 1/20;/—3. Sem is the surface area of

rm

sphere with a radius of r,, = 2.45A for the strongest
H-bonding

OEDSAprobc 2(1 ) a(Hd) E E a(probe)
E, probe) = enthalpy factor of the probe H-bond donor

OFEDSA,gpe = Z(1 . . . #)ka1a)CaCapprobe)

Cyprobe) = free energy factor of the probe H-bond

acceptor

STEA e = HA(5)

STED e = fHA(5)
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PSA. Hence, we only mention here that the definition of PSA is similar to that of
N, and N;. Thus, PSA possesses the same disadvantages when compared to ther-
modynamic H-bond descriptors. In fact, it has been estimated that there is a strong
linear relationship between the calculated static PSA and the calculated dynamic
polar surface [32, 33]. A further possible simplification using only the number of
H-bond forming atoms and PLS statistics was proposed [35]. Excellent correlations
of PSA with the number of H-bond donors and acceptors were published
35, 36].

Obviously, PSA, like N, and Ny, is not a perfect descriptor for transport proper-
ties, at least in the framework of the initial definition. Clark [32] first proposed to
refine PSA by considering the strength of H-bonds. Then, Van de Waterbeemd
stated that “a further refinement in the PSA approach is expected to come from
taking into account the strength of the H-bonds, which in principle already is the
basis of the HYBOT approach” [37]. This idea was realized in [38, 39], where four
new 3D HYBOT surface descriptors related to PSA were proposed including
WEASA (van der Waals enthalpy acceptor surface area), WFEASA (Van der Waals
free energy acceptor surface area), WEDSA (van der Waals enthalpy donor surface
area) and WFEDSA (Van der Waals free energy donor surface area); see also
Table 6.3.

6.3.2
SYBYL H-bond Parameters

The Tripos force field considers H-bonds as nondirectional and electrostatic in
nature [40]. To accommodate this, calculations in which H-bonds are expected to
be important should include partial charges and the electrostatic contributions.
H-bond energies are included in the evaluation of the force field by scaling the
van der Waals interactions between nitrogen, oxygen and fluorine and hydrogens
bonded to nitrogen, oxygen or fluorine. For an alternative treatment, the next
formula is applied:

Eytioncs = 3.[Cy /R~ Dy [ RYY] ®)

where Cj is a coefficient depicting repulsive hydrogen atom-hydrogen acceptor
interactions, Dy is a coefficient depicting attractive hydrogen atom-hydrogen
acceptor interactions, and R; is a distance between atoms i and j (A)

6.3.3
Distance H-bond Potentials

Since the beginning of the 1980s, two different approaches to quantify the H-bond
contribution to properties at the 2D and 3D levels developed independently. The
carefully parameterized methodology of HYBOT allows one to take into account
the influence of substituents on H-bond acceptor and donor strengths. Modern
procedures based on X-ray data of ligand—macromolecular complexes consider the
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distance and angle dependences of H-bonding. Goodford et al. exploited this
approach in developing the method GRID [41-43]. This method is parameterized
by fitting experimental X-ray data from crystalline complexes, and is designed to
calculate the interactions of a probe (a small molecule such as water or ammonia)
and a macromolecular system.

The GRID energy is usually computed pairwise between the probe at its grid
point and each extended atom of the target, one by one. First versions of the pro-
gramme used only three energy components for each pairwise energy (E):

EZZE1j+2EeI+ZEhb ©)

where XEj is Lennard-Jones, XE, is electrostatic and XE,, is H-bonding terms,
and:

Ehb:E,XE,XEP (10)

E, E, and E, are functions of , t and p, respectively (r is the distance between the
probe group and an atom in the target, ¢ is the angle made by the H-bond at the
target and p is the angle at the probe).

The 8-6 function was adopted, and found to give the most satisfactory results
and the closest agreement with experimental observation [42]. This was given by
following equations:

E.=C/r*=D/r° (11)

where C = —3E,r® (kcal A*mol™), D = —4E,,rS(kcal A* mol™), r is the separation of
the acceptor atom and the donor heavy atom in angstroms, E,, is the optimum
H-bond energy in kcal mol™ for the particular H-bonding atoms considered and
I'm is the optimum H-bond length in angstroms for the particular H-bonding atoms
considered.

There are three fixed H-bond potentials (E,) in the GRID framework:
—4.00kcalmol™ as an optimum H-bond energy for O—H---O complexes,
-2.8kcalmol™ for O—H---N and N—H- - -O complexes, and -2.00kcalmol™ for
N—H- - -N complexes, and three fixed optimum H-bond lengths: 2.8 A for O- - - O,
3.0A for N---O and 3.2A for N- - -N heavy atoms [42]. Nevertheless, the authors
of the approach noted that “Further work will be required, but it is already clear
that H-bonds involving ether oxygens may be weaker than those to other oxygen
atoms”. In a recent publication Goodford already indicated that the H-bond term
is calculated on the basis of the same equation as for the Lennard-Jones term
[(Ej = (Ad-Bd’)F, where i = —12 and j = —6)] “but the constants A and B now have
values which depend on the chemical nature of the interacting atoms, and the
function F depends on their hybridization and the relative positions of the interact-
ing atoms and their bonded neighbors” [44].

In 1987 Raevsky proposed to describe 3D structure by means of the spectra of
interatomic interactions [24]. In this approach each pair of atoms in a molecule
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gives a line in the spectrum for any type of interaction. A line’s position corre-
sponds to the distance between the two atoms while its intensity corresponds to
the product of physicochemical parameters associated with those atoms. Atomic
vibrations transform lines into bands; thus spectra of interatomic interactions are
superpositions of all such bands. The computer program MOLTRA (MOLecular
TRansfom Analysis) [45] calculates a set of such spectra including interactions of
H-bond acceptors between each other (its intensity corresponds to a product of
H-bond acceptor factors calculated by HYBOT), interactions of H-bond donors
between each other (its intensity corresponds to a product of H-bond donor
factors) and interactions of H-bond acceptors with H-bond donors (its intensity
corresponds to a product of H-bond acceptor and donor factors). An example of
such spectra for H-bond donors in a set of porphyrins is shown in Fig. 6.3. In
principle, each point of such spectra can be used as H-bond acceptor—acceptor
(HBAA), H-bond donor-donor (HBDD) and H-bond acceptor-donor (HBAD)
distance descriptor. Other valuable 3D H-bond descriptors can be estimated by
quantitatively comparing the same type of spectra for all compounds in any train-
ing set. Any spectral region and all possible distances may be considered and
similarity indices of spectra (SIS+ +, SIS— —, SIS+ —) may be used to construct
QSAR for any property or activity [46].
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Fig. 6.3 Spectra of H-bond donor interactions in a set of porphyrins.
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An attempt to consider the influence of substituents on H-bond potentials was
described later in [47]. Here the molecular H-bonding potential (MHBP) is calcu-
lated as follows:

MHBP, = iﬁfmw& \fU) (12)

where k indicates a given point in space, i is a given fragment, N is the total
number of fragments in the molecule, f; is the o or B free energy solvatochromatic
parameters of H-bonding of atom i, f{U) is the angular function, f; is the distance
function, Dy is the distance between fragments i and point k. However, the appli-
cation of this approach is limited by the use of free energy solvatochromatic H-
bonding parameters (instead of enthalpy!) and, as in GRID, a fixed parameter of
distance function for optimum H-bond potentials.

The development of H-bond potentials on the basis of enthalpy data and distance
functions for optimal energies is described in Ref. [48]. The HYBOT program
package contains a large database on thermodynamic parameters of H-bond com-
plexes of small organic molecules, including 5984 of the type O—H - - - O (the range
of enthalpy values for this type of complex is 0.9-15.9kcal mol™), 3039 of the type
O—H---N (0.1-19.1kcal mol™), 1016 of the type N—H---O (0.5-10.5kcalmol™)
and 305 of the type N—H---N (0.5-11.5kcalmol™). One can suppose that an
optimum arrangement of partners in H-bonding can be realized in cases where
small molecules do not have any bulky substituents. Thus, one can presume that
the above-mentioned enthalpy interval values correspond to the optimum enthalpy
of H-bonding (E,;). Those values depend on the types of functional groups partici-
pating in H-bonding and the nature of their substituents.

The wide intervals of enthalpy values for each of those types of H-bonding
complexes allow to infer a dependency between energies and distances even in
the case of an optimum arrangement of the atoms participating in the H-bond.
Hence, to create a realistic platform to quantitatively describe H-bonding, one
must recognize that optimum H-bond energies (E,;) depend on optimum H-bond
distances (r;) for the different types of H-bonds found in various complexes.
Raevsky and Skvortsov [48] selected specific complexes to assess the relationship
between the lengths of H-bonds and their energies. Optimum H-bonding condi-
tions occur when there is a linear arrangement of the heavy donor atom, hydrogen
and acceptor atom, and of the acceptor nucleus, electron pair and hydrogen atom.
Thus, 58 such “ideal” H-bonding complexes (in which the angles of the donor
heavy atom, hydrogen and acceptor atoms were in the range of 173-187°, and
angles of the acceptor nucleus, the lone pair of electron and the hydrogen atom
were in the range of 170-190°) were selected from the Cambridge Structural
Database. There were 13 such O—H- - - O complexes, 19 O—H---N or N—H---O
complexes and 26 N—H - - - N complexes among the 58 “ideal” representatives. The
information about a part of those “ideal” systems is included in Table 6.4.

It is obvious that there are enough large intervals of distances between heavy
atoms (D,4) in “ideal” complexes even for the same type of H-bonding (OH- - -O,
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Tab. 6.4 X-ray data, H-bond parameters and optimum energies and distances for few “ideal” complexes [48].

Complex' D, D, ey’ P’ E, E, Acceptor Donor E,xE, E, o
DLASPAO02 2.542 1.508 179.42 17797 150 -2.63 O O -393 -5.19 2.59
SIGBEP 2.667 1.719 176.7 175.13 1.24 -263 O (e} -3.26 -4.30 2.66
KAPVUS 2.688 2.024 175.55 177.73 150 =211 O O -3.16 -4.17 2.67
CAMALH 2.819 1814 1794 17344 150 -1.23 O (@] -1.84 -2.43 2844
WAZLIS 2934 1826 17842 17351 1.44 -088 O O -1.27 -1.67 2.953
BEQVUO 2.62 1.782 17547 175.78 2.07 -2.74 N O -5.67 -7.49 2578
NEDDOP 2.802 1984 175.11 17737 199 -211 N O -4.19 -5.54 2.776
DEPGAG 2.897 1951 178.25 17693 178 -191 O N -3.40 -449 2.884
ICRERD10 2946 2.049 179.11 17742 178 -183 O N -3.27 -431 2.903
JICWIB10 3.045 2.146 177.05 17554 2.06 -129 O N -2.66 -3.51 2995
ZUFDE] 2.745 1902 17831 17348 217 -1.87 N N -4.06 =536 2.741
BARIMZ10 2.871 1.759 175.71 177.46 214 -183 N N -3.92 -5.17 2.772
RIWJIQ 2.896 2.084 17398 176.16 199 -1.83 N N -3.66 -4.83 2.828
REMTUY 3.087 2232 176.69 17098 199 -129 N N -2.57 =339 3.073
GIFZAWO01 3.059 2.008 178.57 17594 199 -129 N N -2.57 -3.39 3.073

A w o oN

Complex code in accordance with Ref. [49].

D,q is distance between donor heavy and acceptor atoms.
D,;, is distance between acceptor atom and hydrogen.

ta and pyp) are angles in accordance with Ref. [42].

NH---Oand NH- - - O). Because there are significant differences between covalent
and van der Waals radii of oxygen and nitrogen atoms, the relationships between
optimum energy and optimum distances were sought separately for the three
above-mentioned subsets [48]. Those relationships were not expected to be linear
because energy values approach zero as distance increases. In that study a sigmoid
function was used:

B = ky /(1410275 mi) (13)

Values of k; are fixed and limited by the maximum values for the enthalpies. Rea-
sonably good correlations of E,,; with r,,; were estimated.

Rearranging Eq. (13) and simplifying the constants, they obtained the following
equation was obtained:

i = ks 10g[(Ky = Euni) /(Eus )] + ks (14)

Using Eq. (14) it is now possible to calculate r,,; from E,,; values (see the results
of such calculation for 15 “ideal” complexes in Table 6.4). Thus, for each specific
pair of atoms participating in an H-bond, the H-bonding potential can be calcu-
lated on the basis of Egs. (3), (11) and (14). Examples of such potentials for
O—H- - -O complexes are presented in Fig. 6.4.
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Fig. 6.4 H-bond potentials for OH - - - O complexes. The bold
curve corresponds to Goodford’s fixed potential for all
OH - - - O complexes.

Hence, a scheme to calculate the H-bonding energy of atoms in a 3D arrange-
ment can be carried out by the following steps:
Use HYBOT's acceptor and donor enthalpy factors to estimate the
optimum H-bonding energy via Eq. (3),
Estimate the optimum H-bonding distance corresponding to the
calculated energy optimum via Eq. (14),
Use Eq. (11) or other functions to reflect distance and angle deviations
from “ideal” arrangement of the atoms.

The above given calculation scheme for energies of H-bond complexes was
realized in the program 3D HYBOT [50]. This program also calculates 10 3D
descriptors including already mentioned descriptors WEASA, WFEASA, WEDSA
and WFEDSA, and also additional six descriptors: OEASA, ., OFEASA e,
OEDSAiobe; OFEDSA,ope, SIEA e and SIED,,,qp., Which are defined in Table 6.3.
The last ones quantitatively characterize surface areas around a molecule where
the optimum enthalpy (free energy) of interactions of donor (acceptor) atoms with
H-bond acceptor (donor) probe is realized. The HYBOT surface descriptors gave
greatly improved descriptions of H-bond capabilities of compounds compared to
PSA and ensured better statistical parameters in correlating human intestinal
absorption with 154 passively transported drugs [39].
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Concluding this section on H-bond potentials, the important role of surround-
ing water molecules in ligand-protein complex formation deserves mentioning.
Binding of the ligand to its specific site will be favored if the energy of H-bonds
in the complex and the entropy gain in realizing some bound water molecules are
more favorable than the free energy contribution of the H-bonds between the
binding partners, in their free state, and these water molecules [1]. Due to its vital
importance for any area of human activity, there were many attempts to study
structure of liquid water. In spite of the apparent simplicity of the water molecule,
“liquid water is one of the most mysterious substances in our world” [51]. Up to
the present time experimental data on liquid and solid water were interpreted on
the basis of a water model with four strong hydrogen bridge bonds, two of them being
formed by two lone pair electrons of oxygen and two coordinated hydrogen atoms
of two water molecules in the first hydration shell. However, recently Wernet
et al. studied the first hydration shell of a water molecule in liquid water by probing
its electronic structure using X-ray absorption spectroscopy and X-ray Raman scat-
tering [52]. They concluded that liquid “water consists mainly of structures with
only two strong H-bonds, one donating and one accepting”. This result “nonetheless
implies that most molecules are arranged in strongly H-bond chains or rings
embedded in a disordered cluster network connected mainly by weak H-bonds”.

6.4
Application of H-bond Descriptors in QSAR Studies and Drug Design

H-bonding is an important, but not the sole, interatomic interaction. Thus, total
energy is usually calculated as the sum of steric, electrostatic, H-bonding and other
components of interatomic interactions. A similar situation holds with QSAR
studies of any property (activity) where H-bond parameters are used in combina-
tion with other descriptors. For example, five molecular descriptors are applied in
the solvation equation of Kamlet-Taft-Abraham: excess of molecular refraction
(R,), which models dispersion force interactions arising from the polarizability of
n- and n-electrons; the solute polarity/polarizability (n}) due to solute-solvent
interactions between bond dipoles and induced dipoles; overall or summation H-
bond acidity (Zo3'); overall or summation H-bond basicity (£B5); and McGowan
volume (V,) [53]:

logSP=c+rR2+sn?+a20c§[+b2B2H+vi (15)

In the framework of the mobile order and disorder (MOD) theory five components
contribute most to the Gibbs free energy of partitioning of a solute in a biphasic
system of two essentially immiscible solvents [23]:

logP = AB+AD+ AF + AO+AOH (16)

where the entropy of missing term, AB, informs about differences between the
two phases in the entropy of the solute/solvent exchange; the hydrophobic effect
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term, AF, accounts for differences in the propensities of the solvent phases to
squeeze the solute out of the solution; two H-bond interaction terms, AO and
AOH, express differences in the strengths of the H-bonds that bind the solute and
solvent molecules in each phase; and the term AD is similar to the two previous
ones, but accounts for nonspecific forces only.

The thermodynamic approach followed by Raevsky considers the property P to
be based on contributions from three main intermolecular interactions: steric,
electrostatic and H-bonding [38]:

P=f(a. Y4 3C) (17)

where o is molecular polarizability (a volume-related term), Xq is a sum of partial
atomic charges (an electrostatics-related term) in a molecule and XC comprises
free energy H-bonding factors.

6.4.1
Solubility and Partitioning of Chemicals in Water—Solvent-Gas Systems

The solubility of chemicals, drugs or pollutants in water (S,), in octanol (S,), their
saturation concentration in air (C,;,), as well as their partitioning in the correspond-
ing two-phase systems [octanol-water (P, = C,/Cy), air—water (Pyi = Cair/ Cyi) and
air—octanol (P, = Cyir/C,)] are important physicochemical parameters in medici-
nal chemistry and in environmental research. The following correlations of those
properties with HYBOT descriptors have been published recently [54-58]:

log P, = 0.267(+0.008)0. — 1.00(+0.02) > C, (18)
n=2850,r*=0.94,5=0.23
log Py = 0.032(+0.008)0t — 1.63(£0.07) ¥, C, +1.04(£0.07) Y’ Cy (19)

n=322,r*=0.91,5=0.65

log Pyirjo = —0.258(+0.017)0. — 0.43(£0.16) ¥ C, +0.73(0.19) ¥ Cy (20)

n=98,r*=0.86,5=0.61

log S, = 0.53(+0.11) - 0.275(0.008)cc + 0.90(+0.05) " C, (1)
-0.33(£0.06) Y Cq

n=569,r>=0.89,5s=0.49

log S, =1.06(+0.15) - 0.063(+0.006)0: +0.03(+0.03) " C, (22)
- 0.14(£0.04)> Cy

n=23,r"=0.92,5=0.16
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log Cir = 0.36(0.25) — 0.257(+0.014)o — 0.33(£0.11) Y. C,
+0.78(£0.04)) C, (23)

n=90,r>=0.90,s=0.40

Thus, there is a significant influence of H-bond capability on partitioning and
solubility of chemicals. From Eqs. 18-23, we can conclude that partitioning in the
system octanol-water is the result of the competing volume-related term (expressed
by o) and the molecular H-bond acceptor ability (expressed by HYBOT’s 2C,).
Partitioning in the air—water system almost completely depends on the H-bond
acceptor and donor abilities of chemicals. H-bond ability contributes negatively to
partitioning in the air-octanol system. H-bond strength strongly increases the
concentration in water and decreases the concentration in air.

Partitioning in the octanol-water system was characterized by the solvation
equation [59]:

logP,,,, = 0.088 +0.562F —1.0545 — 0.032A — 3.460B + 3.814V (24)

n=813,r*=995,5s=0.12, F =23161.6

Statistical criteria of Eq. (24) are too good; the standard deviation, which was
created on the basis of different measurements by various authors, is much less
than even the experimental error of determination. This could be due to mutual
intercorrelation of descriptors “leading to over-optimistic statistics” [18]. Another
reason may be the lack of diversity in the training set. The application of the solva-
tion equation to data extracted from the MEDchem97 database gave much more
modest results: n = 8844, ¥* = 0.83, root mean square error = 0.674, F = 8416
[60].

An amended solvation energy relationship was used for correlation of solubility
of compounds in water [61]:

log S, =0.518 = 1.004R, +0.771m} +2.168 ) ol5' + 4.238)" B} (25)
-3.262) o5 Y B —3.967vV,

n=659,r*=92,5=0.56, F =1256

The excellent correlation between calculated and experimental log P values was
obtained by vast investigations of the partitioning of simple chemicals in different
mutually immiscible two-phase liquid systems by means of universal model based
on the MOD theory [23]:

log Py = 0.993(:0.005)log Peyy (26)
n=2207,r*=0.94,5s=0.55

The author of this approach indicated that partitioning incorporates two major
factors, namely, a “bulk or volume” component (AB + AF) favoring lipophilicity
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and a “solvation” component (AD + AO + AOH) opposing lipophilicity. From this
point of view the MOD model, the “solvation equation” and the HYBOT approach
do not differ fundamentally.

6.4.2
Permeability and Absorption in Humans

Calculated molecular descriptors including H-bond parameters were used for
QSAR studies on different types of permeability. For example, the new H-bond
descriptor £C,q4, characterizing the total H-bond ability of a compound, was suc-
cessfully applied to model Caco-2 cell permeability of 17 drugs [30]. A similar study
on human jejunal in vivo permeability of 22 structurally diverse compounds is
described in Ref. [62]. An excellent one-parameter correlation of human red cell
basal permeability (BP) was obtained using the H-bond donor strength [63]:

log BP = —0.70(0.64) +1.08(£0.16)>" C¢ (27)

n=10,r*=0.97,12=0.95,5s=0.43

A quantitative description of human skin permeability (k,) based on H-bond donor
and acceptor factors was obtained with 22 alcohols and steroids [63]:

logk, = —4.88(+0.48) +0.23(+0.17) Y C, - 0.31(x0.10) ¥ Cy (28)

n=22,r"=0.83,r2=0.79,5s=0.50

QSAR studies of the pH-dependent partitioning of acidic and basic drugs into
liposomes [64] yielded following equations:

log P, =3.22+0.0760.—0.216 Y Cui —0.91) 43 (29)
logP_,=1.48+0.0760.~1.32 g, +0.97Ip (30)
log By =2.39+0.0760. - 0.092 " C,(,)— 0.93) g’ (31)

n=>54,R=0.924,5=10.36,Q = 0.889

For 31 passively transported drugs, excellent sigmoidal relationships were found
between human intestinal absorption and their H-bond acceptor and donor factors
[65]:

FA = 1/(1 + 10—[5.02—0A312Cad]) (32)

n=31r"=0.89,5s=0.12

FA = 1/(1 + 10—[5.05—0.36):Ca+0.262Cd]) (33)

n=31r"=0.955=0.09
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A volume-related term (expressed by polarizability) and electrostatics (expressed
by partial atomic charge) made minor contributions to intestinal absorption in
humans. Lipophilicity, expressed by log P or log D values, shows no correlation
with the human absorption data. Recently, similar results were obtained for 154
passively transported drugs on the basis of surface thermodynamics descriptors
39]:

FA=1 /(1 4 10—[2.2—0.016(OFEASA+OFEDSA)]) (34)

n=154,r>=0.83,5s=0.15

The application of the “solvation equation” for the effective rate of absorption
(log GI k.q) gave rather modest results [66]:

log Glk.s = 0.544 — 0.025E +0.141S — 0.409A — 0.513B + 0.204V (35)
n=127,r*=0.79,s=0.29, F=0.84

The influence of physicochemical properties, including lipophilicity, H-bonding
capacity and molecular size and shape descriptors on brain uptake has been inves-
tigated using a selection of 45 known CNS-active and 80 CNS-inactive drugs [67].
A combination of a H-bonding and a molecular size descriptor, i.e. the major
components of lipophilicity and permeability, avoiding knowledge of distribution
coefficients, is proposed to estimate the BBB penetration potential of new drug
candidates.

The permeability of “drug-like” chemicals and real drugs was comprehensively
studied by Lipinski [68]. Four databases which contain the information
about many thousands of chemicals including compounds from the Derwent
World Drug Index (WDI), International Non-Proprietary Names (INN), US
Adopted Names (USAN), New Chemical Entities (NCE) and New Drugs were
used to compare ADME properties. The graphical comparison (Fig. 6.5a [68])
of £C,4 with the fraction of chemicals within a given database with (XC, +
¥Cy) up to a certain value of £C,4 permitted to conclude that “the Raevsky
sum as a global measure of the influence of H-bond donor and acceptor groups
on permeability shows the very large difference and hence likely poorer perme-
ability between the newer drugs and the older drugs”. Figure 6.5(b, prepared
by the author of this chapter) shows for passively transported drugs a plot of
the fraction absorbed in humans (FA) against their XC,4 values. The comparison
of the two diagrams convincingly confirms the possibility to use thermodynamic
H-bond acceptor and donor factors for permeability estimation. It is obvious
from the right diagram that drugs having XC,4 < 15.00 are well absorbed
compounds. Thus, there are about 70% such compounds among INN/USAN
drugs, 65% among WDI, 60% among NCE and only 40% among New
Drugs.
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(a) (b)
@ Newer drugs are less permeable

Fig. 6.5 (a) Plot of the fraction of compounds (b) Fraction of a compound absorbed (FA) in
within a database with “XC,4 < values shown  humans plotted against the compounds’ XCyq
on the x-axis” against XC,q (e.g. 40% of “New value.

Drugs” have XC,4 < 15) [68].

6.4.3
Classification of Pharmacokinetic Properties in Computer-aided Selection of
Useful Compounds

The Biopharmaceutic Classification System (BCS) [69] separates drugs into four
different classes depending on their solubility and permeability: class 1 (high solu-
bility, high permeability), class 2 (low solubility, high permeability), class 3 (high
solubility, low permeability) and class 4 (low solubility, low permeability). The
rate-limiting step to drug absorption will vary according to the class to which the
drug belongs. For a class 2 drug, the limiting step is dissolution; permeability plays
only a minor role. On the other hand, for a class 3 drug, permeability is rate-
limiting while dissolution has very little influence on absorption [70].

Of course, class 4 is not valuable in medicinal chemistry. Such compounds have
to be excluded from drug discovery processes as early as possible. At present, there
are computer “alert” programs based on the “Rule-of-5” or similar approaches that
are used in preliminary screening to select and exclude compounds of class 4 [71].
Van de Waterbeemd indicated in 1998 that the four BCS classes of drugs can be
determined solely by considering physicochemical descriptors such as molecular
weight and PSA [72]. However, as mentioned in this chapter, those descriptors are
too crude for the quantitative description of molecular size and H-bonding ability.

For this purpose, we decided to apply molecular polarizability and H-bond
factors, as calculated by HYBOT, to published water solubility and oral absorption
data of 254 drugs. Among them, 156 had a solubility >50pgmL™ and FAs >0.50;
they were assigned to class 1. The 74 drugs with a solubility <50pg mL™" and FAs
>0.50 were grouped in class 2. The 17 drugs with a solubility >50pgmL™ but FAs
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Tab. 6.5 Biopharmaceutics classification for 254 Drugs on the basis of HYBOT descriptors.

Biopharmaceutical class

1(S>50ugmL™; 2 (S<50ugmL™; 3 (S>50ugmL”; 4 (S<50pgmL™;

FA > 0.50) FA > 0.50) FA < 0.50) FA < 0.50)
Drugs number 156 74 17 7
Percent 61.4 29.1 6.7 2.8
Correct solubility 115 (73.7%) 61 (83.4%) 16 (94.1%) 5 (74.1%)
recognition
FA 135 (86.5%) 69 (93.2%) 13 (76.5%) 3 (42.9%)

<0.5 were placed in class 3, while the 7 drugs with a solubility <50pg mL™ and
FAs <0.50 were put in class 4.

For a sufficient discrimination of highly soluble from poorly soluble drugs, a
combination of two descriptors was needed: o and £C,. Out of the 173 drugs in
class 1 and class 3 (i.e. compounds with S > 50pgmL™), 131 drugs (about 76%)
fulfilled the condition of 0.25 oo — ZC, < 2.0. In contrast, of the 81 drugs in classes
2 and 4 (i.e. those with S < 50ugmL™), 66 (about 82%) fulfilled the condition of
0.250. - ZC, > 2.0.

The most important parameter in classifying absorption is XC,4. Of the 230
drugs in classes 1 and 2 (those having FA > 0.50), 204 (about 89%) have sums of
H-bond acceptor and donor factors of less than 15.00. On the basis of the three
descriptors considered, the probability of correct classification is about 75%. Bio-
pharmaceutical classification based on HYBOT descriptors is presented in Table
6.5. In our previous publications, for solubility and for absorption, we indicated
that there were few significant deviations between the calculated values and those
observed as estimated by QSAR models. For example, the presence of C(O)NH
and SO,NH groups in drugs significantly decreases its solubility. Drugs contain-
ing a PhACHNH]J group in B-lactams can be actively transported and so move from
class 3 to class 1 or from class 4 to class 2. It is possible that a biopharmaceutical
classification of drugs could be made more correctly by combining physicochemi-
cal descriptors with empirical rules related to structural fragments.

An analysis of the solubility and absorption rates for the 254 drugs considered
here shows that the 25 compounds fulfilling the condition of 0.25a — XC, > 5.0
and XC,q > 20.0 have solubility of only a few micrograms per milliliter, and are
absorbed at the level of only a few percents. Such properties are too poor for drug
development, so these parameters can be useful as an “alert” in computer-aided
compound selection.

6.4.4
Chemical Interactions with Biological Targets

Beyond successful modeling of important physicochemical drug properties, there
exist several examples in the literature that document the prime impact of H-bond
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descriptors for pharmacodynamic drug properties. These include, for example, the
affinities (K;) to muscarinic receptors [27], the inhibition of phosphorylation of
polyGAT Dby oa-substituted benzilidenemalononitrile-5-S-aryltyrphostins [46], as
well as the inhibition of dihydrofolate reductase by 4,6-diamino-1,2-dehydro-2,2-
dimethyl-1-(p-phenyl)-S-triazines [46].

6.4.5
Aquatic Toxicity

Usually aquatic toxicity of chemicals with general narcosis mechanism of action
is described by the octanol/water partition coefficient [73]. However, log P, is a
composite descriptor which has components of molecular volume and H-bond
acceptor terms. Raevsky and Dearden [74] therefore used molecular polarizability
(as a volume-related term) and the H-bond acceptor factor instead of log Py, to
model aquatic toxicity (log LCs) to the guppy for 90 chemicals with general narco-
sis mechanisms. This excellent correlation has statistical criteria better than that
obtained for the same data using log Py

logLCsy = 5.14(20.12) - 0.259(£0.008)0: + 0.79(10.03) ¥’ C, (36)

n=90,72=0.95,5s=0.32

6.5
Conclusions

It was indicated in a remarkable publication of Kubinyi in 2001 that “despite of
all attempts to arrive at a better understanding of the role of water and of H-bonds
in biological systems and of all the individual enthalpy and entropy terms that are
involved in disolvation, H-bond formation, and hydrophobic interactions we are
far from a satisfactory situation” [1]. One of the main reasons for this situation is
the ubiquitous application of indirect and/or indicator parameters of H-bonding
processes in QSAR studies and drug design up to recent times. Studies based on
direct thermodynamic parameters of H-bonding and exact 3D structures of H-
bonding complexes have essentially improved our understanding of complex pro-
cesses of solvation and specific intermolecular interactions. These studies consider
the structure of liquid water, new X-ray data for specific H-bonding complexes,
quantitative estimation of contribution of H-bond acceptor and donor factors and
volume-related terms in chemicals solvation processes, partitioning in water—
solvent—air systems, a refinement in the PSA approach, improvement of GRID
potentials, and calculation schemes of optimum H-bonding potential values for
any concrete H-bonding atoms in any complexes which consider the nature of
interacting atoms and the influence of substituents. These developments ensure
real quantitative description of H-bonding and the successful application of direct
H-bonding descriptors in QSAR and drug design.
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Three-dimensional Structure Generation

Jens Sadowski

Abbreviations

2D, 3D two-, three-dimensional

CCR close contact ratio

CSD Cambridge Structural Database

NMR nuclear magnetic resonance

PDB Protein Data Bank

QSAR  quantitative structure—activity relationships
RMS root mean square

7.1
Introduction

Many biological, physical and chemical properties are clearly functions of the
three-dimensional (3D) structure of a molecule. Thus, the understanding of recep-
tor-ligand interactions, molecular properties or chemical reactivity requires not
only information on how atoms are connected in a molecule (connection table),
but also on their 3D structure.

Since the early days of organic chemistry, the tetrahedral nature of tetravalent
carbon has been known along with such consequences as chirality or the ability
to rotate the plane of polarized light. X-ray crystallography has helped to a deeper
insight into the 3D structure of molecules and can be used to even determine the
absolute configuration of chiral compounds. In addition, several systems to rep-
resent stereochemistry and other 3D features in two dimensions on paper have
been proposed over the years such as the Fischer projection or the representation
of chiral centers with wedge-like bonds indicating whether they point above of
below the paper plane. Even qualitative conformational representations as illus-
trated in the drawings of the chair and the boat conformations of cyclohexane in
Fig. 7.1 are commonly used. However, despite being useful to highlight the 3D
nature of some structural aspects, these representation schemes are quantitative
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Fig. 7.1 Symbolic drawings of cyclohexane chair and boat conformations in two dimensions
using different line thickness and wedge symbols.

and do not allow for a more detailed analysis of 3D properties of molecules and
they cannot reflect conformational flexibility appropriately.

Mechanical 3D molecular models have been used by chemists since the end of
the 19th century. In particular, Andre Dreiding’s stainless steel models have
become rather popular since the 1950s. Some of Dreiding’s findings illustrate the
experiences of working with mechanical models: “The degree of elasticity of the
construction material causes that the Bayer strain of ring systems becomes sensi-
ble with the fingers. When transforming the cyclohexane chair form into the flex-
ible form or vice versa, one has first to overcome a certain strain after which the
atoms ‘snap’ themselves into the other form. The Pitzer strain however is not
directly visible; it can only be estimated by measurement of the distances of non-
bonded atoms”. Even the true mechanical nature of the models is highlighted by
another experimental result: “The chair-boat transformation was executed 15000
times by a machine on a number of cyclohexane models until one unit broke. The
angles of the non-broken units were not deformed”.

The increased interest in 3D aspects of organic chemistry and quantitative
structure—activity relationship (QSAR) studies has caused an increasing need
for a much broader access to 3D molecular structures from experiment or
calculation.

Experimental sources of 3D structure information are X-ray crystallography,
microwave spectroscopy, electron diffraction and nuclear magnetic resonance
(NMR) spectroscopy. The largest source of experimentally determined molecular
structures is the Cambridge Crystallographic Database (CSD) [1], which contains
at present about 400000 X-ray structures of small molecules. In addition, the
Brookhaven Protein Data Bank (PDB) [2] contains about 40000 structures of
proteins and other biological macromolecules, including several thousands of
drug-sized molecules in their biologically active conformations bound into their
receptors. For several reasons, the experimental sources of 3D structures are not
sufficient and there is a real need for computer-generated models:

« The number of compounds whose 3D structure has been determined
(about 400 000) is small when compared to the number of known
compounds (more than 25 million).

« Computational techniques in organic chemistry such as for drug design,
structure elucidation or synthesis planning quite often investigate
enormous numbers of hypothetical molecules, which are not yet
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synthesized or even not stable, as in the case of transition states of
chemical reactions.

« Theoretical methods such as quantum mechanics or molecular mechanics
can produce 3D molecular models of high quality and predict a number of
molecular properties with high precision. Unfortunately, these techniques
also require at least some reasonable 3D geometry of the molecule as
starting point.

« Very often, it is unknown which conformation of a flexible molecule is
needed. For example, in drug design, we hunt often for the so-called
bioactive conformation, which is the molecule in its receptor-bound
state. In this case, any other experimental structure of the isolated
molecule - in vacuum, in solution or in crystal — can be the wrong
choice.

The missing link between the constitution of a molecule and its 3D structure
in computational chemistry is a technique capable of automatically generating 3D
models starting from the connectivity information of a given molecule. Due to its
basic role, 3D structure generation is one of the fundamental problems in com-
putational chemistry. As a consequence, in recent years a number of automatic
3D model builders and conformer generators have become available. For two
comprehensive reviews, see Refs. [3, 4].

In the following, we will discuss two-dimensional (2D)-to-3D conversion in this
context. However, it should be emphasized that we do so only for the sake of
brevity. In reality, none of the conversion programs utilizes information of a 2D
image of a chemical structure. Only the information on the atoms of a molecule
and how they are connected is used (i.e. the starting information is the constitution
of the molecule). One could even refer to linear structure representations such as
SMILES as one-dimensional. However this is not true since SMILES allows for
branches and ring closure which makes its information content essentially 2D.
Thus, all structure representations which lack 3D atomic coordinates will in the
following simply be referred to as 2D.

Most molecules of organic, biochemical or pharmaceutical interest can adopt
more than one conformation. Although this ability to adopt multiple conforma-
tions has some implications for generating a single low-energy 3D structure which
we will cover here, we will not embark in general into the field of conformation
analysis, which is instead covered in the next chapter as a topic of its own.
However, having said this, even many conformation analysis approaches need at
least one reasonable 3D structure to start with.

The consecutive levels of 3D information are illustrated in Fig. 7.2. The pure
connectivity information is usually referred to as 2D. If stereo information is avail-
able, it can be referred to as “2.5D” since the stereo descriptors add some 3D
information. From this, a single 3D structure is obtained from the program
CORINA [5] and, subsequently, a multi-conformer ensemble from the program
OMEGA [6] (bottom left). In this chapter, we will refer only to the step from 2D
(2.5D) to 3D.
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Fig. 7.2 Consecutive levels of 3D information for adenosine diphosphate.

7.2
Problem Description

7.2.1
Computational Requirements

The main area of automatic structure generation is the 2D-to-3D conversion of
large sets of drug-like organic compounds. These sets often contain millions of
structures, imposing some restrictions on the development of 3D structure genera-
tors. Database developers at Molecular Design Ltd formulated the following crite-
ria for a 2D-to-3D conversion program [7]:

« Robustness. The program should run for a long time and many molecules
before failing, and it should indicate the actions taken on failure rather
than simply crash.

« Large files. The program should be able to handle large numbers of
structures contained in a single file to minimize the number of conversion
jobs.

Variety of chemical types. The program should be able to handle a wide

variety of chemical types.

« Stereochemistry. The stereochemical information contained in the input
data must be handled correctly.



7.2 Problem Description

« Rapid and automated. The large size of the databases to be processed
requires the conversion program to run in batch mode and to work with
acceptable speed.

« High-quality models. The generated models should be of sufficiently high
quality without any further energy minimization and should represent at
least one low-energy conformation. It should have internal diagnostics to
validate the models generated.

7.2.2
General Problems

Each approach to automatic generation of 3D molecular models has to solve a
number of general problems. The strategy for building a molecular model can be
compared with the use of a mechanical molecular model building kit or its modern
replacement — interactive 3D molecule editors. Monocentric fragments that repre-
sent different hybridization states and provide the corresponding bond angles are
connected using joints with a length corresponding to the required bond lengths.

A basic assumption in this process of 3D structure generation is an allowed
transfer of bond lengths and bond angles from one molecular environment to
another (i.e. the usage of standard values for bond lengths and bond angles).
However, this assumption requires us to distinguish between a sufficiently large
number of different atom types, hybridization states and bond types with appropri-
ate bond lengths and bond angles. Usually, the deviations from these standard
values are rather small.

A totally different situation is encountered for dihedral or torsional angles,
which describe the twisting of a fragment of four atoms connected by a sequence
of bonds. As the steric energy may have multiple minima around a rotatable bond
with similar energy content, this leads to more than one possibility for con-
structing a 3D model for such molecules, or in other terms, to multiple
conformations.

In acyclic molecules or substructures, the preferred torsional angles are those
which simultaneously minimize torsional strain and the steric interactions between
nonbonded atoms. The relatively large flexibility of such systems gives rise to
multiple solutions (conformations) for the process of structure generation, which
have quite similar energy. Account of this flexibility has to be taken and geometri-
cally unacceptable situations such as the overlap of atoms (“clashes”) must strictly
be avoided. With increasing numbers of possible conformations, it becomes less
and less likely that the generated 3D structure corresponds to the experimentally
determined geometry, which often is just one of many possible low-energy
conformations.

In cyclic structures, ring closure has to be taken into account as an additional
geometrical constraint of the 3D structure generation process. Ring closure
dramatically reduces the degrees of freedom as expressed in a reduction in the
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number of possible conformations compared to those in acyclic systems. In par-
ticular, the endocyclic torsion angles are mutually dependent. Due to this fact,
many of the available programs for 3D structure generation use explicit informa-
tion about possible single-ring conformations. These so-called ring templates
fulfill implicitly the ring closure condition. They can be stored as explicit 3D coor-
dinates or simply as lists of torsion angles. Additional levels of sophistication are
reached when the rings have exocyclic substituents or when they are assembled
in fused or bridged ring systems. Another challenge arises with increasing ring
size. Large rings are apart from the requirement to ring closure nearly as flexible
as acyclic systems.

A simple example illustrates the different conformational problems encoun-
tered in chain portions and ring fragments of a molecule. When searching all
conformations of n-hexane by systematically permuting all torsion angles in 60°
steps, the theoretical number of conformations is 3* (methyl torsions omitted).
Only 12 of these 81 conformations are valid. When instead searching conforma-
tions of cyclohexane in the same manner, only one conformation is found which
fulfills the ring closure condition — the cyclohexane chair conformation. Note that
other known cyclohexane conformations such as boat and twist-boat cannot be
constructed from torsion angles on a 60° grid.

Due to the specific complications when predicting the geometry of ring systems,
many of the approaches to 3D structure generation dedicate most of the program
intelligence to this part. Most often, the molecule under consideration is frag-
mented into acyclic and cyclic portions at the very beginning of the 3D generation
process. The fragments are then handled separately and reassembled at the end
of the whole process.

7.2.3
What 3D Structures Do You Need?

As already outlined above, often there are many different relevant 3D structures
of one and the same molecule, like the receptor-bound conformation of bioactive
molecules as well as their conformations in the solvent, crystal or gas phase. Many
applications in computational drug design, structure elucidation or prediction of
transition states in synthetic chemistry depend on them. In addition to this, there
are as many different ways to 3D structures. As an illustration, consider the
conformations of biotin shown in Fig. 7.3. There, the conformation of biotin
in complex with streptavidin is compared to a small-molecule X-ray structure
of biotin alone, to a single 3D structure obtained from CORINA, to the global
minimum from a conformational search with OMEGA and to the AM1 optimized
global energy minimum. In addition, there might be other, different conformation
one would obtain from gas-phase experiments or in solvent. All are relevant and,
most often, all are different. Thus, a single 3D structure can never serve all pur-
poses. Consider it rather as a starting point for further investigations based on
conformation analysis or experiment.
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LS OMEGA

CORINA

Fig. 7.3 Biotin in the conformation bound to by CORINA, the lowest energy conformation
streptavidin (PDB TNQM) compared to a from a conformation search with OMEGA and
small-molecule X-ray structure from CSD the AM1 optimized global minimum.
(BIOTIN10), a single 3D structure generated

7.3
Concepts

7.3.1
Classification of Strategies

Here, an attempt to classify different strategies to generate 3D molecular models
is undertaken with the aim to specify the remit of methods which will be covered
under the term “automatic 3D structure generators”. The focus will be on methods
designed for small, drug-like molecules. The prediction of the geometry of poly-
mers, in particular of biopolymers, is a task of its own and not even attempted by
the approaches discussed here.

Manual methods. In the early beginning of thinking in three dimensions in
organic chemistry, 3D molecular models were built by hand, using standard bond
length and bond angle units from mechanical molecular model building kits. This
technique, still useful today, found its modern expression in the well-known inter-
active 3D structure editing options incorporated into nearly all graphical modeling
programs. The user may construct a 3D molecular model interactively by position-
ing atoms and bonds on a 3D graphics interface or by connecting predefined
fragments. All these approaches clearly do not fulfill the requirement of being
automatic and will therefore not be covered here.
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Data-based and rule-based methods. Most automatic approaches for 3D generation
are based on the knowledge of chemist about geometric and energetic rules and
principles for constructing 3D molecular models. This knowledge was originally
gained from experimental data and through theoretical investigations. It is built
into 2D-to-3D conversion programs in the form of data tables (e.g. standard bond
lengths) and rules (e.g. prefer equatorial over axial conformations for mono-
substituted cyclohexane).

Fragment-based methods. At the far end of data-based methods are approaches
that use data in the form of fragment geometries. Three-dimensional data about
geometries of typical multi-atom fragments of molecules are used to build com-
plete 3D structures. The fragments used are often of high quality and obtained
either from crystal structures or theoretical calculations. The most common use
of fragment data is templates for ring conformations.

Conformation analysis methods. In many cases in the process of building a 3D
structure from scratch, decisions have to be made between multiple alternatives
with similar energy. A typical example is an sp’—sp’ torsion angle with similar
energies for the alternatives of +60°, -60° and 180°. In many cases, rules are used
to decide (e.g. stretch an open chain portion as much as possible to avoid clashes).
Sometimes, the best result cannot be determined without a conformation analysis
(e.g. complex ring systems with exocyclic substituents). Despite conformation
analysis being a topic of its own covered in the next chapter, many automatic 3D
structure generators have to fall back in certain situations to a limited conforma-
tion search in order so solve a specific problem and to come up with a reasonable
solution.

Numerical methods. Computer-intensive numerical methods like quantum
mechanics, molecular mechanics, or distance geometry [8] do not normally fall
into the scope of automatic model builders. However, some model builders have
built-in fast geometry optimization procedures or make use of distance geometry
in order to generate fragment conformations.

Clearly, there is no sharp border between all of the concepts discussed above.
Most model builders try to use at least some of them in an efficient mixture in
order to achieve the best compromise between computation times and quality.

7.3.2
Standard Values

Much of the knowledge derived from experimental structures and from theory can
be systematically expressed as explicit data about certain geometric details. Typical
examples are standard bond lengths and bond angles which are stored in tables.
Since both bond lengths and bond angles have only one global energy minimum,
it is possible to store preferred values for typical bond types and angle types. Most
often, these values are derived from experimental structures in the CSD [1] or from
textbook knowledge. Programs differ in the level of detail for these constants. For
example, a bond between two sp® carbons can include details about the chemical
context on different levels. The following statistics were obtained from the CSD for
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Fig. 7.4 Distributions of bond lengths found in the CSD for all single Csp’>~Csp’ bonds
(closed line), for the methylene analogs RCH,~CH,R (dashed line) and for single bonds
between quaternary carbons R;C—CR; (dotted line).

Csp’-Csp’ single bonds (Fig. 7.4). The first histogram (closed line) refers to the
unspecific fragment with any substituents. It has a maximum between 1.52 and
1.53 A. The second histogram (dashed line) refers to the fragment with two hydro-
gens attached to each carbon. It is a bit more distinct with its maximum slightly
shifted towards shorter bond lengths. Clearly, the increased context information
gives a sharper maximum and allows for a more precise guess for an appropriate
bond length. In the third case, a histogram was obtained for single bonds between
two quaternary sp’ carbons (dotted line). In this case, the increased steric hindrance
causes a shift towards longer bond lengths. However, the differences between the
histograms are rather small and in most cases the rough guess of 1.53 obtained
from the most general distribution (closed line) is good enough.

Bond angles are another typical example for tabulated geometric parameters. The
most general way to treat them is to use standard values for basic atomic geometries
as 180° for sp, 120° for sp” and 109.47° for sp’. As in the case of the bond lengths,
different substitution patterns around the central atom can cause shifts of the bond
angles away from these ideal values. Figure 7.5 shows bond angle distributions
found in the CSD for general tetrahedral carbons, their methylene analogs
R-CH,-R and quaternary carbons R—CR,-R without any hydrogen attached. The
most general histogram for all sp’® carbons is almost symmetrically distributed
around 111° (closed line). Asymmetric substitution with two heavy atoms and two
hydrogens causes angle widening between the heavy atoms towards 113° (dashed
line), whereas quaternary substitution with four heavy atoms attached to the central
carbon forces the angle distribution back towards values around 109°. Again, a
more detailed bond angle type can help to assign more accurate values but in most
cases the ideal value of 109.5° would be good enough for sp’® carbons.
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Fig. 7.5 Distributions of bond angles found in the CSD for all sp® carbons (closed line), for
the methylene analogs R—-CH,—R (dashed line), and for quaternary carbons with four
nonhydrogen substituents R—~CR,—R (dotted line).

The last example for commonly used standard values in 3D structure generation
is torsion angles. Torsion angles can have multiple local energy minima distrib-
uted over 360°. This behavior can be reflected by storing explicit angle values for
torsion angles corresponding to local energy minima. In addition, the torsion
angles can be augmented by information about the energy level they correspond
to. Again, an example based on statistics from the CSD will illustrate this. Figure
7.6 shows the distribution of torsion angles obtained for ortho-substituted phenol
ethers. The histogram shows a strong preference for a planar configuration around
zero® with the ether substituent opposite to the ortho substituent. There is another
weakly populated maximum around 90°. In this case, a 3D generator could use
this knowledge by using preferentially 0° for torsions of this type with an alterna-
tive value of 90° with lower preference. In addition, using inverse Boltzmann sta-
tistics, an energy equation can be derived from the distribution as E(t)=-Aln f{1),
where E(t) is the energy value corresponding to torsion angle T, A is an adjustable
factor and f{1) is the frequency of torsion angle t. This is done by both the confor-
mation analysis program MIMUMBA [9] and the 3D structure generator CORINA
[5]. The closed line graph of the derived energy in Fig. 7.6 illustrates this.

7.3.3
Fragments

Another way to use data about known geometric details is to use multi-atom frag-
ments with explicit 3D coordinates in the 3D generation process. One obvious
example is ring templates. By using complete ring geometries as building blocks,
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Fig. 7.6 Torsion angle distribution for ortho-substituted phenol ethers (bars) and the derived
potential energy (closed line).
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Fig. 7.7 Ring templates for cyclohexane (left) and cyclohexene (right) together with their
associated internal energies.

the program does not have to care any longer about ring closure since the template
ring geometries will be closed already. By using multiple geometries for individual
ring types, this concept can be used even for ring conformation analysis. Figure
7.7 shows templates for cyclohexane and cyclohexene as used by the program
CORINA [5] along with the internal energy values used by the program to rank
them. Note that the cyclohexane boat conformation very likely will not be interest-
ing as a reasonable low-energy geometry due to its high energy content. Still, the
boat template might be interesting for constructing larger multi-ring structures
with geometric restrictions.
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The ring templates can be further used to construct larger, multicyclic systems
as illustrated in Fig. 7.8. For norbornane, two fitting conformations of cyclopen-
tane in the envelope conformation can be joined in order to construct the complete
3D structure of norbornane. In this case, this is the only low-energy conformation
known for norbornane due to its rigidity.

In other cases like in atropine (Fig. 7.9), it is beneficial to analyze multiple ring
conformations in order to make a good decision for one low-energy conformer.
In this case, a cyclopentane envelope is combined with a cyclohexane chair and a
cyclohexane boat, respectively, in order to form geometries for the bicyclic ring
system of atropine. The internal energies of the templates and the resulting com-
plete ring system are given below. Note that the total energies are not just the
sums of the fragment energies. They are corrected by terms for the exocyclic sub-
stituents. We come to rules for exocyclic substituents in more detail when discuss-
ing rules for constructing 3D models.

Fig. 7.8 Joining two cyclopentane envelopes to the norbornane 3D structure.

91 klfmol

48 kl/mol 27 klfmol

)

48 kJ/mol 56 klfmol 112 kJfmol

Fig. 7.9 Constructing ring conformations for atropine from ring templates.
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7.3.4
Rules

In addition to value tables and fragment data, a certain part of the knowledge about
3D structures can be expressed in more general rules for solving specific problems
in the 3D generation process. Here, some typical examples will be illustrated.

Equatorial /axial ring substituents. A particular aspect of ring conformation is the
configuration of exocyclic substituents. The most commonly known example is
the equatorial versus axial placement of substituents of saturated, nonplanar rings,
e.g. cyclohexane. Methyl-cyclohexane can adopt two different chair conformations
which place the methyl substituent either in the plane of the ring (equatorial — to
the left) or perpendicular to it (axial — to the right) as shown in Fig. 7.10(a). The
spectroscopically measured energy difference between the two conformations is
7.1kJmol™ (for a good reference for experimental conformational energies, see
Ref. [10]). This particular energy contribution is known as the so-called Pitzer
strain. The energy difference is mainly caused by the extra steric strain between
the axial methyl group and the axial hydrogens in the 3-position as indicated by
the dotted line. The main parameter for this steric interaction is size. Figure
7.10(b) shows t-butyl-cyclohexane. The larger size of the t-butyl substituent causes
a significantly higher Pitzer strain of 23kJmol™. Programs for 3D generation
normally have rules implemented which prefer the largest substituent in equato-
rial position.

In addition to this so-called 1,3-interaction between an exocyclic substituent and
the hydrogens in 3-position, steric interactions can cause extra strain also in 1,2-
disubstituted rings as the trans-1,2-dimethyl-cyclohexane in Fig. 7.10(c). The

et

7.1 kd/mol 23 kd/mol
Cl
C) %@ ’ 82%% § S
cl
10.6 kd/mol -2.1 kd/mol

Fig. 7.10 Examples of equatorial and axial cyclohexane substituents and the corresponding
energy differences. (a) Methyl-cyclohexane, (b) t-butyl-cyclohexane, (c) trans-1,2-dimethyl-
cyclohexane and (d) trans-1,2-dichloro-cyclohexane.
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energy difference between the eq,eq and the ax,ax conformations is 10.6k] mol™
—much closer than expected to the mono-substituted analog in Fig. 7.10(a) despite
the ax,ax form (right-hand side) having twice the number of axial substituents.
The reason is that the eq,eq conformation (left-hand side) also causes extra strain
by the two methyl groups coming into close contact. This extra contribution is
roughly the equivalent of half an axial methyl group. This equatorial-equatorial
effect can even invert the order of conformations as shown in Fig. 7.10(e). In
the case of trans-1,2-dichloro-cyclohexane, the 1,2-diequatorial interaction (left)
becomes so strong that the diaxial conformation (right) is energetically preferred
by —2.1kJmol". A program for 3D structure generation should also have rules to
decide in cases like this correctly.

Note that the 1,2-diequatorial substituted examples in Fig 7.10(c and d) are
individual stereoisomers. The corresponding cis-species (Fig. 7.11b) is not another
conformation, but another stereo isomer. The experimentally by calorimetry deter-
mined energy difference between the isomers is 6.5k] mol™.

Trivalent nitrogen. The handling of trivalent nitrogen can potentially be tricky
under certain circumstances. One typical case is trivalent nitrogen attached to a
T-system, e.g. an aromatic ring. An example is aniline as shown in Fig. 7.12. To
a certain extend, the free electron pair of the nitrogen atom is conjugated to the
aromatic system with a preferred flat geometry. On the other hand, the conjuga-
tion is not very strong which keeps the C-N bond rotatable. If the torsion angle
of the C-N bond is turned away from the planar conformation of 0°, the conjuga-
tion becomes even weaker and the nitrogen changes its configuration from a flat
geometry to a pryramidal configuration. The truth is that nitrogen is flexible and
can rather freely change between the two extremes. However, often there is a sta-
tistical preference for one of them.

Evidence for this behavior can be found in experimental structures. Analyzing
the CSD for the configuration of nitrogen in anilines with two hydrogens at the
nitrogen atom, the distribution shown in Fig. 7.13 is found. The so-called out-of-
plane angle of the nitrogen center varies between 0° and 60°. The global maximum

hatal

Fig. 7.11 1,2-dimethyl cyclohexane stereoisomers: (a) trans and (b) cis.

b ooy

Fig. 7.12 Planar and pyramidal configuration of aniline nitrogen.
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Fig. 7.13 Distribution of aniline nitrogen out-of-plane angles in the CSD.

is around 0° (completely flat). There is another local maximum between 30° and
40° which corresponds to a pyramidal configuration. Nitrogen is flexible! The crux
for 3D structure generation is that a program normally generates just one of the
possible configurations. Thus, appropriate rules for handling this situation are
needed. In the case of a nitrogen with two hydrogen atoms, the majority of cases
seem to be flat. Thus, most structure generators will prefer to generate just this
configuration.

The situation becomes more complex in the case of nonhydrogen substituents
attached to the nitrogen or ortho-substituents at the aromatic ring. Both potentially
drive the nitrogen out of its preferred planar, conjugated conformation. The
program CORINA [5] has a set of rules implemented based on a careful analysis
of the CSD as illustrated in Fig. 7.14. Similar rules can be used in related cases,
e.g., sulfone amides.

Flexible nitrogen. Another nitrogen-related problem can be addressed by rules as
well. Pyramidal nitrogen can normally freely change its configuration between the
two pseudo stereo isomers. This conformational exchange has an energy barrier
in the order of magnitude of a torsion angle and can be spectroscopically observed,
and is sometimes even called pseudo-rotation. For a single 3D structure this does
normally not matter, but it should be observed when generating multiple confor-
mations. However, there are cases were a program has to take into account this
extra degree of freedom, e.g. when the nitrogen is in a context with other, fixed
centers. Figure 7.15 shows two conformations of 1,3-dimethyl-piperidine. A rule

7
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NH, N
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Fig. 7.14 Aniline rules implemented in CORINA.
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Fig. 7.15 Two conformations of 1,3-dimethyl-piperidine.

implemented in the 3D structure generation program should normally prefer the
di-equatorial form on the left-hand side.

Restricted stereo centers. Taking care of chiral centers is an important part of the
3D structure generation process — any given stereo information has to be taken
into account and the result has to be the correct stereoisomer. However, in cases
with unspecified stereo centers, it is normally good enough to choose just one
arbitrary isomer since they do not differ in macroscopic properties as conforma-
tional energy. This is different in cases where a chiral center is locked into a ring.
One typical case is stereo centers in rings with exocyclic neighbors. Rules have to
ensure that in cases with unspecified stereochemistry the correct form with the
lowest energy is produced. This is similar to the flexible amine example above.
Another important case is bridgehead atoms in cage-like bridged ring systems. A
simple example is norbornane Fig. 7.16. Only the stereoisomer with both hydro-
gens at the junction atoms in exo position is valid. The theoretical endo,exo form
is geometrically impossible. A structure generator should have rules in place
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Fig. 7.16 Norbornane stereoisomers and 3D structures. Only the exo,exo form (left) can exist.

which in cases with unspecified chirality automatically produce the correct exo,exo
form. However, if the input structure accidentally comes with the incorrect form
specified, it is impossible to generate a valid 3D structure.

7.3.5
Quality Control

High quality is one of the criteria defined in the requirements section above. Since
the program should run automatically in batch mode, we mean by quality control
an internal check of the 3D structures produced by the structure generator itself.
In general, the abilities of a fast, automatic structure builder to assess the
quality of its models are rather limited since, for example, an exhaustive con-
formation analysis and energy optimization is impossible in most cases. However,
there are a limited number of simple quality checks to avoid trivially distorted
structures:

« Comparison of bond lengths and angles in the generated structures with
their default values.

« Check of the planarity of functional groups which are by definition planar,
e.g., aniline nitrogen, double bonds or amides.

« Close intramolecular contacts (clashes). A rough measure has been
proposed and implemented in the program CONCORD [4, 11] — the close
contact ratio (CCR). The CCR of a 3D structure is defined as the ratio of
the smallest nonbonded distance to the smallest acceptable value for this
distance. Normally, structures with CCR>0.8 are acceptable. Some
programs as CORINA [5] or CONCORD [4, 11] have fallback procedures
for attempting to relax close contacts in structures with unacceptably low
CCR.

If the above sketched quality checks flag for an unacceptably distorted or unreal-
istic geometry and the program cannot remedy this, it should be good practice not
to send the questionable structure to the output file.
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7.3.6
Comparison of 3D Structures

Often, one needs to compare different 3D structures or conformations of a mole-
cule. That is done internally by the 3D structure generation program to weed out
too similar conformations of fragments. Another aspect is the need of the com-
putational chemist to compare different generated or experimental structures. A
well-established measure is the so-called root mean square (RMS) value of all
atom-atom distances between two 3D structures. The RMS value needed here is
a minimum value achieved by superimposing the two 3D structures optimally.
Before calculating the RMS, the sum of interatomic distances is minimized by
optimizing the superimposition in 3D.
The RMS value is only a rough measure for the similarity of two conformations.
It is summarized over all atoms under consideration. That means that a local
drastic deviation between two conformations can be hidden in an overall good fit.
Reversely, a deviation in one part of the molecule can hide a perfect fit of another
part. However, the RMS is very useful for obtaining a quick, robust measure
of conformational similarity. A few recommendations can help to a better
understanding:
« Exclude hydrogen atoms since their position is in many cases fixed by the
heavy atoms they are attached to. This reduces the amount of noise in the
RMS value significantly.
« Make sure that symmetry is taken into account when producing the atom
mapping between the two conformations. Consider the example given in
Fig. 7.17. The molecule — phenyl-cyclohexane — has two independent
symmetry axes through the two rings as indicated by dotted lines. This

RMS =1.2A RMS =0.27 A
Fig. 7.17 RMS fits of two similar phenyl- side fit was obtained with an incorrect atom
cyclohexane conformations. The structural mapping. The right-hand side fit is obtained
diagram indicates the two independent from the correct atom mapping.

symmetry axes (dotted lines). The left-hand
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RMS = 0.3 A RMS = 1.0 A

Fig. 7.18 Two computed conformations of a molecule compared to its known crystal
structure.

symmetry leads to two sets of topologically equivalent atoms and
subsequently to four different ways to map the atoms of two
conformations onto each other. The atom mapping used for the fit on the
left-hand side causes a suboptimal fit and subsequently misleads to a high
RMS value. The correct atom mapping of the symmetrically related atoms
leads instead to the optimal low RMS as illustrated on the right.

« The following rules of thumb for interpreting RMS values are given: less
than 1.0 A is similar and less than 0.3 A is nearly identical. This is
illustrated in Fig. 7.18. The crystal structure of a small molecule from the
CSD is compared to two conformations generated by the program
OMEGA [6]. On the left-hand side, the superimposition of one
conformation with the X-ray structure results in an RMS of 0.3 A. The two
conformations are basically the same. For the other conformation on the
right-hand side an RMS of 1.0 A is obtained since the amide moiety is
rotated into a different direction. See the next chapter for a more
detailed introduction of the use of the RMS value when sampling
conformations.

7.4
Practical Aspects

7.4.1
Brief Overview and Evaluation of Available Software

The reliability of scientific work based on computer-generated 3D structures
requires a careful evaluation of available 3D generators to find the program best
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suited for this purpose. The history of concepts and software in this field has been
exhaustively reviewed in the literature [3, 4]. In addition, an evaluation study of
seven publicly available structure generators using 639 X-ray structures has been
published some years ago [12]. In recent years, mainly two programs have been
widely used — CORINA [5] and CONCORD [11]. Both have been developed for
mainly one purpose — fast and automatic generation of high-quality, single con-
formation 3D structures of drug-sized molecules. Thus, focus in this section will
be exclusively on these two programs. Here, an updated evaluation study based
on 25017 X-ray structures will be presented.

Dataset. The dataset was selected from the CSD [1] under the following restric-
tions: error-free organic compounds, fully resolved, with the connection table
completely assigned and with an R factor less than or equal to 5%. After export,
all purely inorganic compounds without any carbon atoms, all compounds outside
a molecular weight range between 100 and 750, compounds with more than six
rotatable bonds, and compounds with rings larger than nine atoms were removed.
In cases with multiple species in the unit cell, all fragments but the largest one
were removed (i.e. counter ions, solvents, etc.). Finally, all duplicate compounds
were removed from the dataset. These criteria should reduce the dataset to
reasonably small and moderately flexible compounds, resulting in 25017 struc-
tures. After calculating stereo parity values for stereo centers and converting into
the MDL SDFile format [13], this dataset was used for the present evaluation
study.

Criteria. It was chosen to base this study mainly on the ability of the programs
to reproduce experimental structures or features thereof. Despite the fact that even
an experimental structure normally just shows one of potentially many reasonable
low-energy conformations of a molecule, and that CONCORD and CORINA also
just create one single conformation, coverage of X-ray structures will highlight
significant tendencies in the ability of the software to generate high-quality struc-
tures. The evaluation procedure is inspired by the computational requirements
defined in Section 7.1.1. For both programs, a set of quality criteria was deter-
mined: the conversion rate, the number of program crashes, the number of stereo
errors, the average computation time per molecule, the percentage of reproduced
X-ray geometries, the percentage of reproduced ring geometries, the percentage
of reproduced chain geometries and the percentage of structures with too close
intramolecular contacts (clashes). An X-ray geometry is considered to be reason-
ably well reproduced if the RMS deviation of the heavy atom positions is less than
0.3A. In cases of ring atoms, only flexible rings were considered and the percent-
ages are based on the number of compounds with flexible rings. This excludes
trivial rigid cases as phenyl rings from this criterion. A chain geometry is taken
to be well reproduced if the RMS deviation of the torsion angles at rotatable bonds
is less than 15°. A 3D structure is considered to be free of close contacts if the
CCR (the ratio of the smallest nonbonded distance to the smallest acceptable value
for this distance) is greater than 0.8.

Programs. CONCORD version 6.1.0 and CORINA version 3.4 were used for this
study. CONCORD was run with the following options:



%logfile nobrief
$logdef concord.log
$max_atoms 1000
$max_rotors 1000
$max_ring_len 1000
$relax bumps
$relax_mode ccr
%optimize none
$hbond off

$sybyl off

$mdl no2d

gmdldef out.sdf
%connectivity mdl
$status

%input in.sdf
gexit

7.4 Practical Aspects

CORINA was run with the “~d r2d” option in order to remove structures without

generated 3D coordinates from the output.

Results. Table 7.1 summarizes the results of the evaluation study obtained for
CONCORD and CORINA. None of the programs crashed or produced any stereo
errors. CORINA had a conversion rate close to 100%, whereas CONCORD con-
verted only 91%. However, CONCORD was faster than CORINA with an average

Tab. 7.1 Comparison of CONCORD and CORINA using 25017

X-ray structures.

CONCORD CORINA
Conversion rate (%) 90.8 99.9
Program crashes - -
Stereo errors - -
CPU time (s/molecule)! 0.004 0.014
RMS <0.3 <A (%) 20 29
RMS™#<0.3A (%)* 71 78
RMS™<15° (%) 32 43
CCR>0.8 (%)’ 96 98

1 Ona2.8GHz Pentium running Red Hat Linux 9.

Percentage of structures with an RMS deviation of the

nonhydrogen atoms less than 0.3 A.

3 Percentage of structures with an RMS deviation of the

atoms in flexible rings less than 0.3 A.

4 Percentage of structures with an RMS deviation of the
torsion angles in open-chain portions of less than 15°.
5 Percentage of structures with a close contact ratio of

greater than 0.8.
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conversion time of 0.004s per compound compared to 0.014s per compound for
CORINA. Looking at the structure-related quality criteria, the percentages of repro-
duced X-ray geometries in all criteria are in favor of CORINA. In summary, both
programs perform a robust, fast and reasonably good 3D conversion. CONCORD
is about 3.5 times faster than CORINA, whereas CORINA has a significantly
higher conversion rate of structures with a better reproduction of the experimental
geometries on average.

7.4.2
Practical Recommendations

In this section a few practical recommendations are given. Most of them are gener-
ally applicable to all programs, some are specific for CORINA - the program the
author of this chapter is best familiar with.

File formats. Most programs for 3D conversion accept a number of different
input and output formats. The most common ones are MDL SDFile [13], SMILES
[14], SYBYL MOL2 [15]and PDB [2]. SMILES and SDFile are the only formats for
encoding chemical structures completely with all information on atomic number,
bond types, chiral centers and formal charges. Both SMILES and SDFile are most
recommended as input formats for 3D structure generation. SMILES cannot store
3D information and is thus not applicable as output format. MOL2 is based on
detailed atom types which encode a lot more of the chemical nature of the atoms.
This feature is at the same time the strongest limitation of the MOL2 format since
there are many chemical features which are not mapped by the available atom
types and thus cannot be expressed correctly. PDB is the least suitable format for
small molecules since it lacks information on formal charges, chirality and bond
types. Thus, it is normally not supported as input format and should not be used
as output format for storing 3D structures. Despite being less useful for encoding
general molecules, MOL2 and PDB are popular formats in many application pro-
grams, and sometimes the only supported input formats. The following recom-
mendations are given for using input and output formats: Use preferentially
SMILES of SDFile for input and MOL2 only if you must. Use preferentially SDFile
for output and MOL2 or PDB only if you must.

Stereo input. Both SMILES and SDFile use explicit local atom and double bond
stereo descriptors. In addition, chirality can be calculated from 3D coordinates
given in SDFiles or MOL2. SDFile supports in addition the opportunity to express
tetrahedral stereocenters by using wedge bond symbols pointing above or below
the plane of 2D structure diagrams. However, drawing 2D structures and assign-
ing wedge bond descriptors opens for a few common pit-falls which lead to
ambiguous chirality. Figure 7.19(a) shows a few examples of what is not recom-
mended. Avoid in particular drawing substituents of tetrahedral atoms with 90 or
180° angles between the bond vectors or centers where all substituents point into
the same 180° half circle. The same principles can be applied to chiral double
bonds. The recommended way to draw a tetrahedral stereocenter unambiguously
is to distribute three substituents symmetrically separated by 120° around the
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Fig. 7.19 (a) Ambiguous 2D drawings of stereo centers. (b) Recommended encoding of
tetrahedral atoms and double bonds.

center and add the fourth substituent with the wedge bond between two of them.
In drawings with suppressed hydrogen at the stereocenter, start with the same
120° separation between three substituents and add the wedge symbol to one of
them. In case of chiral double bonds, make sure that substituents on the same
side of the double bond are placed on opposite sides of the axis along the double
bond. Figure 7.19(b) shows examples for correctly drawn tetrahedral atoms and
double bonds.

Nitrogen configuration. As discussed above in the section about concepts in 3D
structure generation, trivalent nitrogen can adopt several configurations. Three-
dimensional generators have to settle for one of them usually by using a set of
rules. In cases where this is not sufficient, a few workarounds are available. In
case of conjugated trivalent nitrogen, e.g., in aniline, it is possible to force the
desired configuration — planar or pyramidal — manually and individually for all
atoms by changing the input file. One can use MOL2 as input format and choose
an appropriate nitrogen atom type — N.pl3 for planar or N.3 for pyramidal. Alter-
natively, CORINA accepts an additional feature of SMILES to express atomic
hybridization — [N-2] for planar sp* and [N-3] for pyramidal sp’. Thus, a SMILES
clcccec1[NH2- 3] would force the nitrogen in aniline into pyramidal configuration.
This is of course not applicable in general when automatically converting large
numbers of structures.

Canonical 3D structures. Due to the requirement to generate one single 3D
structure rather than multiple low-energy conformations, generator programs
have often to choose between a number of possible local conformational details
as individual torsion angles. In many cases, these choices are arbitrary between
equally reasonable alternatives, e.g. with equal energy. Commonly, in such cases
the first alternative of a number of equal possibilities is taken. This causes in turn
a dependence of the final geometry from the order of atoms in the molecule and
can in consequence lead to different 3D structures depending on the atom num-
bering. This is normally not a problem since the generated structures are assumed
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to be equally reasonable. For cases where this is irritating or when generation of
exactly the same geometry for different atom numberings is essential, CORINA
offers an option for ensuring that a canonical 3D structure independent of the
atom order is always obtained. Note, however, that this still will not necessarily
lead to similar 3D structures for similar molecules which, for example, share a
common fragment. Since a 3D structure generator processes one molecule at a
time, this is out of the scope of pure 3D structure generation.

General recommendations. Some additional general recommendations are given
here. Before starting the 3D generation process for large databases of molecules,
consider removing small fragments, e.g. salts or solvents, to generate stereo infor-
mation for unspecified centers, to specify the protonation of polar groups and to
define the desired tautomers. For some applications which depend on hydrogen
information, e.g., docking or pharmacophore searching, consider generating mul-
tiple isomers in order to capture all relevant cases. CORINA supports some of
these operations implicitly by options for removing small fragments, for charge
neutralization and for exhaustive stereoisomer generation. Most programs add
missing hydrogen atoms internally during the 3D generation process. Make sure
that these hydrogens are also added to the output file since they contain valuable
additional 3D information.

7.5
Conclusions

Automatic 3D structure generation has been discussed as a fundamental operation
in computational chemistry. It has become a standard procedure in molecular
modeling and appropriate software has been available for many years. Several of
the most common concepts as well as their strengths and limitations have been
shown in detail. An evaluation study of the two most commonly used programs —
CONCORD and CORINA - has shown their general applicability for robust, fast
and automatic 3D structure generation. Within the limitation of single conforma-
tion generation, reasonable rates of reproducing experimental geometries and
other quality criteria are reached. For many applications, the obtained 3D struc-
tures are good enough for use without any further optimization. In addition, the
generated structures can be used for more advanced applications including multi-
conformer generation as discussed in the next chapter.
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Exploiting Ligand Conformations in Drug Design
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Abbreviations

2D, 3D two-, three-dimensional

GB/SA Generalized Born/surface area

HTS high-throughput screening

MMFF Merck molecular force field

PDB Protein Data Bank

PTP1B protein tyrosine phosphatase-1B

QSAR quantitative structure—activity relationship
RMS root mean square

SMARTS  SMiles ARbitrary Target Specification
SMILES  Simplified Molecular Input Line Entry System

8.1
Introduction

Molecules of the simplicity of ethane or the complexity of proteins and DNA adopt
different conformations. In the case of ethane this gives rise to the notion of a
staggered and eclipsed bond, whereas proteins form an array of complex structural
elements and DNA — the famous double helix. The understanding of the confor-
mational properties of small molecules is an important factor in computational
approaches contributing to drug discovery.

This chapter summarizes the computational methodologies used for conforma-
tional analysis. Specifically, Section 8.1 gives a theoretical outline of the problem
and presents details of various implementations of computer codes to perform
conformational analysis. Section 8.2 describes calculations illustrative of the
current accuracy in generating the conformation of a ligand when bound to
proteins (the bioactive conformer) by comparisons to crystallographically
observed data. Finally, Section 8.3 concludes by presenting some practical

Molecular Drug Properties. Measurement and Prediction. R. Mannhold (Ed.)
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applications of using knowledge of molecular conformation in actual drug discov-
ery projects.

8.1.1
Molecular Geometry and Energy Minimizations

The geometry of a molecule determines many of its physical and chemical proper-
ties. There are two distinct approaches to the calculation of molecular geometry
of molecules, i.e. quantum chemical and molecular mechanics (or force field)
methods. These methods are distinguished by the degree in which as models they
rely on parameters. Ab initio quantum methods invoke approximations of differing
levels of sophistication to solve the Schrodinger equation. These methods are
generally free from parameters related to conformational energy, but their com-
putational complexity limits their range of applicability. They can be an invaluable
tool to obtain accurate information, say about a specific torsional barrier [1].
Molecular mechanics substitutes the quantum description of molecules with clas-
sical potential energy functions. These models use simple ideas from physics, e.g.
describing the stretching of a chemical bond as a harmonic oscillator. A typical
force field expression is given by:

Etot = Estretch T Ebond + Evdw + Etorsion + Eelec + Eother (1)

in which various terms arise from the stretching of bonds and angles, rotations
about bonds, van der Waals and electrostatic interactions between all pairs of
atoms, and other terms, e.g. those describing solvation effects. A detailed descrip-
tion of the individual terms in Eq. (1) is given elsewhere [2]. In general, these
terms contain parameters that depend on the way atoms are classified. Force fields
differ in the precise mathematical representations of the terms in Eq. (1) and in
schemes for classifying different atom types. Hence, it is not advisable to attempt
to transfer parameters between different force fields. The advantage of force field
calculations is that they ideally contain a small number of parameters that can be
transferred to a wide range of molecules. The approximations invoked by molecu-
lar mechanics are such that calculations are several orders of magnitude faster
than ab initio quantum methods. It is this performance that facilitates many of
the practical applications of conformational analysis to drug discovery described
later in this chapter. A comparison of force fields commonly in use is given by the
work of Gundertofte et al. [3]. The extent to which force fields are parameterized
is a differentiating feature. Recent work proposes reducing the empirical reliance
on parameterization and improving the physical description of intermolecular
interactions, to address the limitations in the accuracy of current force fields [4].
This work models electron density by Gaussian functions from which accurate
energetic contributions are obtained. Currently this approach is applied to the
accurate computation of components of the intermolecular energy. However, it is
possible that some of the underlying ideas will be adopted in order to obtain better
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accuracy in the calculation of conformational energetics, ultimately bridging the
accuracy gap that exists between quantum and force field methods.

The minimization of the conformational energy given in Eq. (1) as a function
of the position of the atoms is central to conformational analysis. Typically the
nature of the energy function produces many local minima, referred to as con-
formers. In order to identify the most energetically favorable conformer it is neces-
sary to combine a global search methodology (for further details, see Section 8.1.2)
with local energy minimization. There are many approaches to local energy mini-
mization, which generally differ in the way they use gradient information. The
most accurate methods use high-order derivatives of the energy function in Eq.
(1). However, the most reasonable compromises between accuracy and computa-
tional efficiency tend to be methods that make explicit use of the gradient of the
conformational energy, while using various schemes to estimate higher order
derivatives. Such techniques are reviewed by Burkert and Allinger [2]. There are
two contrasting strategies for carrying out local energy minimization. Perhaps the
simplest approach is to allow all of the Cartesian coordinates of atoms to adjust
independently during local energy minimization. This approach is straightforward
to implement, particularly in consideration of the computation of second- and
higher-order gradients. However, it is computationally less efficient than only
allowing changes to torsion angles during energy minimization (ensuring bond
lengths and angles are constrained). This second strategy is a little harder to imple-
ment in the case higher-order derivates are necessary and on occasions can impede
the performance of the search for the global minima. However, the significant
reduction in the number of degrees of freedom being optimized results in much
improved performance.

8.1.2
Conformational Analysis Techniques

Most drug-like molecules adopt a number of conformations through rotations
about bonds and/or inversions about atomic centers, giving the molecules a
number of different three-dimensional (3D) shapes. To obtain different energy
minimized structures using a force field, a conformational search technique must
be combined with the local geometry optimization described in the previous
section. Many such methods have been formulated, and they can be broadly clas-
sified as either systematic or stochastic algorithms.

Systematic searches exhaustively sample conformational space by sequentially
incrementing the torsional angles of all of the rotatable bonds in a given molecule.
This conceptually simple approach is straightforward to implement, but scales
exponentially with respect to the number of rotatable bonds. To control the expo-
nential increase in the number of potential conformers obtained, systematic
searches are usually combined with tree-based search techniques taken from
computer science. Even the best implementations of systematic searches become
impractical beyond several rotatable bonds (typically greater than 10). Stochastic
searches are based on probabilistic theories and are better suited to calculations
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on very flexible molecules. Unlike systematic searches, no attempt is made to
enumerate all possible conformations, but rather statistical sampling is used in
order to efficiently search conformational space. Typical implementations include
Monte Carlo Metropolis sampling, simulated annealing and genetic algorithms.
For an extensive review of methods for searching the conformational space of
molecules the reader is referred to the excellent work by Leach [5].

8.1.2.1 The Relevance of the Input Structure

Conformational analysis programs require an initial 3D structure, from which
conformer ensembles are calculated. However the simplest representation of mol-
ecules is generally concerned with describing how atoms are connected to each
other and by what type of bonds. This notion of a molecule as a two-dimensional
(2D) graph with nodes as atoms and edges as bonds is powerfully exploited by
notations such as SMILES (Simplified Molecular Input Line Entry System) [6],
SYBYL line notation [7] and InChl [8], which provide compact yet detailed repre-
sentations of molecules. Such approaches do not provide any information about
the 3D arrangement of atoms in molecules. The generation of 3D structures given
a 2D graph is a subtle and complex problem, which is reviewed in Chapter 7 of
this volume. Ideally both stochastic and systematic approaches to conformational
searches should be independent of the initial 3D structure. Nonetheless, practical
problems can result in calculated conformational ensembles being significantly
influenced by the choice of starting 3D structure. For example, stochastic searches
will follow different trajectories in conformational space depending on the start-
ing point of the search. Certain trajectories will encounter energy barriers that
“trap” the search in local minima, effectively curtailing the search, and hence
potentially producing different conformational ensembles, depending on the
choice of the initial conformer. Systematic searches in torsion space can be
affected by the choice of bond lengths and particularly bond angles of the initial
3D structure. A poor choice of bond angles that do not accurately reflect local
environments for a given 3D structure can introduce erroneous energy barriers
arising from steric hindrance. This has been shown to subsequently prevent
conformational analysis programs from generating the bioactive conformation [9].
In general, the ideal initial structure is that from experiment (X-ray crystallogra-
phy), although if not available geometry optimization of the initial structure can
prove effective in accounting for the role of local bonding environments on
bond-angles.

8.1.3
Software

Early examples of conformational analysis programs with a specialization suitable
for rational drug design were WIZARD [10] and MULTIC [11]. The current pro-
grams most relevant to drug design are Catalyst [12], ConFlex [13], Confort [14],
Fl099 [15], ICM [16], MacroModel [17], MOE [18], OMEGA [19], SYBYL [20] and
Tinker [21].



8.2 Generating Relevant Conformational Ensembles

There is a wide variation in computational performance and accuracy of these
programs. They differ in their implementation of those details previously described,
such as force fields, search algorithms and local optimization methods. Other
fundamental differences are the treatment of solvation (see Section 8.2.1.4) and
whether the selection of a set of conformers belonging to an ensemble is designed
based on conformational energy relative to the global minimum (Section 8.2.1) or
aims to be diverse in shape with less attention on conformational energy cutoffs
(see Section 8.2.2). To avoid the computational overhead of energy minimization
some programs only assign discrete values to torsions. These values are typically
based on known experimental distributions of torsions and have, for example,
been implemented using SMARTS (SMiles ARbitrary Target Specification) sub-
structure patterns [22].

8.2
Generating Relevant Conformational Ensembles

Critical to computational approaches for supporting drug design projects is the
elucidation of bioactive conformations, i.e. the conformation adopted by ligands
when bound to a biological target. Given a few ligands known to bind to a certain
biological target, determining the details of the bioactive conformation can guide
the molecular design of novel compounds. Alternatively for computational screen-
ing of large multiconformer databases to identify biological active compounds, it
is necessary that sufficient bioactive conformations are generated by the confor-
mational analysis procedure. The need to calculate conformers for a large number
of molecules imposes the constraints that the generation is appropriately fast and
that conformational ensembles can be stored as efficiently as possible.

The aim of this section is to describe the major issues related to using confor-
mational analysis tools with the goal of maximizing the probability of generating
bioactive conformations. We will focus on the two programs that in our experience
have proved the most useful for conformational analysis in applications that con-
tribute to drug discovery projects. These are MacroModel [17], which we consider
particularly useful for detailed analysis, and OMEGA [19], which is useful both for
detailed analysis and for the calculations on large numbers of molecules.

8.2.1
Conformational Energy Cutoffs

A standard approach to conformational analysis is to apply conformational energy
cutoffs [23-25]. This pragmatic approach reduces the number of conformations
in a calculated ensemble, while at the same time removing energetically unrealistic
conformations. In the next section we attempt to obtain optimal values for
energy cutoffs guided by analyzing 36 bioactive conformations obtained from
crystallographically determined ligand—protein complexes, taken from the Protein
Data Bank (PDB) [26].
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8.2.1.1 Thermodynamics of Ligand Binding

The free energy required to transform the lowest energy conformation of a ligand
in solution to the bound (bioactive) conformation is commonly referred to as the
conformational energy penalty. For any chemical equilibrium an increase in the
Gibbs free energy of the system of 1.4kcalmol™ (at 300°C) decreases the equilib-
rium constant by a factor of 10. Obviously in terms of protein-ligand binding,
conformational penalties reduce the binding affinity in numerically the same
fashion. Accordingly, the conformational energy component of ligand binding
may significantly influence the affinity of the ligand. One view of protein-ligand
binding is that the ligand exchanges its solvation environment from water to that
provided by the protein-binding site. The smaller the change in ligand confor-
mation as part of this process the more likely it is to be thermodynamically
favorable.

8.2.1.2 Methods and Computational Procedure
To ensure calculation accuracy only very high-quality ligand—protein complexes
were considered. The full criteria for selecting the 36 ligands are defined as
follows:
« The X-ray structure resolution must be high (<2.0A).
« The “B” factors of the ligands must be low (preferably <30).
« The ligands must not include rotatable bonds that cannot be detected by
protein crystallography, e.g. hydroxyl torsions.
« The ligands should not include unusual moieties, for which there are no
relevant force field parameters.
« The ligands must be reasonably small, flexible and drug-like.

The ReLiBase+ program [27] was used to select the molecules. The molecular
structures are shown in Fig. 8.1, which also displays the PDB entry code.

The conformational energy penalties were calculated as follows. First, the global
minimum for each ligand was obtained from an exhaustive conformational analy-
sis using the Mixed Torsional/Low-Mode search [28], implemented in Macro-
Model version 9.0. This Monte Carlo-based method uses eigenvectors of the
Hessian (positional second derivative matrix) with the lowest eigenvalues, to deter-
mine search directions in conformational space. These eigenvectors correspond
to the low-frequency normal modes and their effectiveness in search algorithms
designed to work in Cartesian coordinates is 2-fold: they filter out search directions
which effect mainly changes to bond lengths and angles, and, more importantly
they identify search directions associated with torsional degrees o